Important Equations in Physics (AS)

Unit 1: Quantities and their measurements (topics 1 and 2 from AS syllabus)

1	System of units M C.O. F.H. SI			I.K.S sys I.G.S. sys I.P.S. sys I system	K.S system, G.S. system, P.S. system and system			meter, kilogram, second centimetre, gram, second foot, pound, second					
2	SI system Base units			ength etre	ngth Mass etre K ilo g ram		Time Tem second kelv		Current ampere(A) lun) car	iinous ensity idela (Cd	An su () m	mount of Ibstance ol e
3	Multiples of units	<i>Tera</i> T 10 ¹²	Giga G 10 ⁹	u Me N 10	ga Kila I K 10 ⁶ 10 ⁵	$\begin{array}{c} o & Deci \\ \mathbf{d} \\ \mathbf{d} \\ 10^{-1} \end{array}$	centi c 10 ⁻²	milli m 10 ⁻³	тісто µ 10 ⁻⁶	nano n 10 ⁻⁹	<i>pico</i> p 10 ⁻¹²	femto f 10 ⁻¹⁵	atto a 10 ⁻¹⁸
4	Celsius to k conversion	celvin		$K=\theta$	$K = \theta^{\circ}C + 273.15$ $Add \ to \ 273.15 \ to \ Celsius \ scale \ to \ convert \ to \ kelvin \ scale$								
5	Accuracy			To fir Noth	<i>To find the accurate value, we need to know the true value of a physical quantity.</i> <i>Nothing can be measured absolutely accurate.</i>								
6	Precision			vali	ue close to	the true v	alue. Co	ın be in	crease by	eensuive	e instrun	ient.	
7	Error			Syste	matic: due	e to faulty o	apparati	us Ra	indom: div	e lo expe	erimente	r	
8	Calculation	a error		For s	$um \ Q=a+\Delta Q=a$	b $\Delta a + \Delta b$		For d	ifference Q	Q=a-b $\Delta Q=A$	$\Delta a + \Delta b$		
9	Calculating error			For p	For product $Q = a \times b$ For division $Q = a/b$ $\Delta Q = \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times Q$ $\Delta Q = \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times Q$								
10	Significant figures (sf) examples			1.234 four s	1.234 1.2 1002 3.07 0.001 0.012 0.0230 0.20 190 four sf two sf four sf three sf one sf two sf three sf 2 or 3 sf						190 2 or 3 sf		
11	Uncertainty Δvalue			the in meas	the interval of confidence around the best measured value such that the measurement is certain not to lie outside this stated interval measurement = best measured value ± uncertainty								
12	Percentage and relative uncertainty			pero	percentage = $\frac{uncertainty}{measured value}$ > $= \frac{\Delta x}{x} \times 100$			 × 10 .e	$\frac{1}{e} \times 100 \qquad relative = \frac{uncertainty}{measured value} = \frac{\Delta x}{x}$				nty value
13	Vector and scalar quantities			Vecto direc	Vector \rightarrow magnitude with unit and direction eg. velocity, force etc			d	Scalar \rightarrow only magnitude with units Eg. density, pressure, speed, distance etc				
14	Magnitude of resultant vector c of two vectors a and b			a and a and ⊥ to Not ⊥	a and b same direction: apply simple addition a and b opposite direction: apply simple subtraction \perp to each other: apply Pythagoras theorem $c = \sqrt{a^2 + b^2}$ Not \perp to each other: apply cosine rule $c^2 = a^2 + b^2 - 2 \times a \times b \times \cos \gamma$								
15	Direction of resultant vector c of two vectors a and b			\mathbf{a} and \mathbf{a} and \perp to \mathbf{a} Not	a and b in same direction then c is also the in the same direction a and b opposite direction then c is in the direction of bigger vector \perp to each other apply $\theta = \tan^{-1} \frac{b}{a}$								
16	Component	s of ved	ctor F		x- con	nponent				y-com	ponent		
	making θ w	ith x-ax	is		$\mathbf{F}_{\mathbf{x}} = \mathbf{F}$	$X \times \cos \theta$				$\mathbf{F}_{\mathbf{y}} = \mathbf{F}$	' × sinθ		
17	Measureme ray oscillos	ent by ca cope (c	ithode ro)	Time horiz	base: ontal scale	e or x-axis		Vertic vertic	cal gain: al scale or	·y-axis			

Important Equations for AS Physics - 9702 www.youtube.com/megalecture

Prepared by Faisal Jaffer, Nov 2011

mob: +92 323 509 4443, email: megalecture@gmail.com²

Unit 2: Motion, force and energy (topic 3, 4, 5 and 6 from AS syllabus)

1	Average velocity \bar{v}	$\overline{v} = \frac{s}{-}$		s is the displacement in meters and t			
		t = t		s the time in seconds.			
2	Instantaneous velocity	Velocity of an object at any	v particular ins	tant of time.			
3	Average acceleration \overline{a}	$\overline{a} - \frac{\Delta v}{\Delta v}$		Δv is the cha	inge of speed and Δt is		
		$u = \Delta t$		the change o	f time. Unit of		
				acceleration is ms ⁻²			
4	Acceleration and velocity	Same direction: acceleration	on is +ve (if ve	locity is in +1	ve direction)		
		Opposite direction: accele	<i>Opposite direction: acceleration is -ve, deceleration, retardation</i>				
5	Graphical representation	(sixef.) (stationary] .f.)	[constant	(i) X Constant speed]			
		Distance	speed]	Speed	C [constant acceleration]		
		0 Time (x-axis) 0 T	ime (x-axis)	0 Time (x-axis	\rightarrow 0 Time (x-axis)		
6	Speed-time graph	Area under the graph: dist	ance covered b	y and object	<u> </u>		
		Gradient of the graph: acc	eleration				
7	Distance-time graph	Gradient of the graphs: sp	eed of an objec	t			
8	Equation for uniform	$v = \frac{s}{r}$		only use whe	n acceleration=0 and		
0	motion, constant motion	t		no net force	is applied		
9	Equations for uniformly	v = u + at		v is the final	velocity in ms^{-1}		
	accelerated motion	$s = \frac{(u+v)}{v}t$		u is the initial velocity in ms^{-1} ,			
	- body start motion $u=0$	2		is the acceleration in mc^{-2} and			
	$\frac{1}{10000000000000000000000000000000000$	$s = ut + \frac{1}{2}at^2$	2	t is the time in s			
	- horizontal motion s-x	$12^2 - 12^2 + 20^2$	2	i is the time i	<i>n</i> s.		
	- vertical motion $s=h=v$	v - u + 2u	5				
10	Friction \rightarrow static and	Static $f_{a} = \mu_{a} \times N$		f_s is the static friction in newton,			
10	dvnamic	Dynamic $f_{1} = \mu_{1} \times N$		f_k is the dyna	mic friction in newton.		
		N is the reaction or normal	l force	μ_s is the coefficient of static friction			
		perpendicular to the surface	ce	μ_k is the coeff. of dynamic friction			
11	Air resistance or viscous	- Opposing force to the motion in presence of air or fluid					
	force or viscous drag	- During free fall in the beg	ginning: weight	t≫air resista	nce+upthrust		
		- Later: weight> air resist	tance+upthrust				
12	Terminal velocity	- at terminal velocity, weig	ht= air resista	nce + upthru.	st		
13	Projectile:	<i>x</i> -component \rightarrow	y-component	\rightarrow	horizontal range		
	Motion in two dimensions,	no acceleration	acceleration	is g	v^2		
	v and angle θ with	$v_x = v \cos \theta$	$v_y = v$	sinθ	$R = -\frac{g}{g} \sin 2\theta$		
	horizontal, upward is +	$x = v_x t = vt \cos \theta$	$y = v_y t \cdot$	– ½gt²	max range at $\theta = 45^{\circ}$		
14	Weight and mass:			w is the wei	ight in newton (N), m is		
	weight is force of gravity,	$w - m \times q$		the mass in kg and g is acceleration			
	mass is the amount of	$W = M \wedge g$		due to gravi	$ty=9.81 ms^{-2}$		
	matter, it never changes						
15	Stability of an object	Lower the centre of gravity \rightarrow more stable the object is Wider the base of an object \rightarrow more stable the object is					
16	Momentum	Momentum=mass×velocity unit is ke.m.s ⁻¹ or N.s					
		$p = m \times v$,	_			
17	Conservation of linear	Total momentum before co	llision = total r	nomentum af	ter collision		
	momentum	$m_A u_A + m_B u_B = m_A v_A + m_B v_B$					
18	Elastic collision	Total kinetic energy before	collision =tote	al kinetic ener	rgy after collision		
		$V_2 m_a u_a^2$	$+ \frac{1}{2}m_b u_b^2 = 1$	$v_2 m_a v_a^2 + v_2$	$m_b v_b^2$		
19	Elastic collision	for two masses $m_a \neq m_b$ of	$pr m_a = m_b th$	e equation m	ust satisfy		
		$u_a + u_b = v_a + v_b$					

Important Equations for AS Physics - 9702

Prepared by Faisal Jaffer, Nov 2011

www.youtube.com/megalecture

mob: +92 323 509 4443, email: megalecture@gmail.com³

20	Inelastic collision	Total kinetic energy before collision>tot	al kinetic energy after collision		
		$V_2 m_a u_a^2 + V_2 m_b u_b^2 >$	$V_2 m_a v_a^2 + V_2 m_b v_b^2$		
21	Newton's first law of	Object in motion \rightarrow stay in motion forev	er –		
	motion	object stationary \rightarrow stay stationary fore	ver 🖵 unless force applied		
22	Newton's second law of	$F_{net} \ltimes a$	- Net force applied ∝ acceleration		
	motion	$m \ltimes 1/a$	- Mass of an object \ltimes 1/acceleration		
		$F_{net} = kma$	-1 N is the amount of force require		
		$F_{net} = ma$	to create an acceleration of 1 ms^{-2} of		
			mass of 1 kg; k=1Nkg ⁻¹ m ⁻¹ s ²		
23	Newton's third law of	Action and reaction forces applied by tw	o objects on each other is always		
	motion	equal in magnitude and opposite in direc	ction		
24	Momentum and 2nd law of	$F = \frac{mv - mu}{mu} = ma$	Rate of change of momentum is		
	motion	t = t	equal to the net force applied		
25	Impulse	$F\Delta t = mv - mu$	Constant force acting for short time		
26	Density ' ρ ' in kgm ⁻³ or	$a - \frac{m}{m}$	- ρ of Mercury is 13.6gcm ⁻³		
	gcm ⁻³	P = V	- ρ of water is 1gcm^{-3} at 4°C		
		m is the mass and V is the volume	- ρ of air 0.001293gcm ⁻³		
27	Pressure p in pascal (Pa)	$n - \frac{F}{F}$	F is the force in N and A is the area		
		p - A	on which the force applied in m ²		
28	Pressure in fluids due to	p = ho gh	ρ is the density of the fluid, g is the		
	depth h in meters		acceleration due to gravity and h is		
			the height or depth in metre		
29	Upthrust:	$upthrust = h\rho gA$	- Object floats if the density of object		
	- upward force applied by	* upthrust is equal to the weight of the	is less than or equal to the density of		
	fluid on an object	liquid displaced	the fluid and object sinks if the		
			density of object is more than the		
20	Magguring the density of		aensity of fiula		
50	Measuring the density of liquid using (upthrust)	density of liquid	upthrust in liquid		
	Archimedes principle	density of water	upthrust in water		
31	Torque or moment of	$Fd \times \sin \theta$	F applied perpendicular to d		
_	force				
32	<i>Torque due to a couple or</i>	Couple one force × perpendicular dist	tance between the two forces		
	two equal forces	$\tau = 1$	Fd		
33	Conditions of equilibrium	$\Sigma F_{net} = 0$	-Total or net force applied is zero		
		$\Sigma \tau_{net} = 0$	-Total torque applied is zero		
34	Work:	$\Delta W = Fs \times \cos \theta$	F is the force, s is the displacement		
	ΔW is the work in joules	work that causes motion $\rightarrow E_k$	in the direction of the force applied		
	1	work that store energy $\rightarrow E_p$	and θ is the angle between F and s		
35	External work done by an	$\Delta W = p \Delta V$	p is the pressure in Pa and ΔV is the		
	expanding gas	In p-V graph the area under the graph	expansion of gas in m		
		is the work done			
35	Work done in stretching a	$\Delta W = \frac{1}{2}kx^2 = \frac{1}{2}Fx$	<i>F</i> is the force applied and <i>x</i> is the		
26	spring	Work= area under the F-x graph	extension		
36	Principal of conservation	Loss of gain or $E_p =$	sgain or loss of E_k		
	of mechanical energy	$\Delta E_p =$	ΔE_k		
		mgh = 1	<i>√2mv</i> [∠]		
37	Electrical potential	$E_{P,q} = qV$	q is the quantity of charge in		
	energy:		coulomb and V is the potential		
	Work done in bring the		difference between the points.		
	unit positive charge from				
	infinity to a point.				
1		1			

Important Equations for AS Physics - 9702

Prepared by Faisal Jaffer, Nov 2011

www.youtube.com/megalecture

mob: +92 323 509 4443, email: megalecture@gmail.com⁴

38	Internal energy:	$\Delta Q = \Delta U + \Delta W$	ΔQ heat applied, ΔU increase in the		
	Sum of the E_k and E_p of		internal energy and ΔW is the work		
	the molecules of a system		done by the system		
39	Power	$P = \frac{W}{t} = Fv$	<i>P</i> is the power in watts, <i>W</i> is the work done, <i>F</i> is the force and t time		
40	Efficiency of a machine	$Efficiency = \frac{useful \ energy \ output}{total \ energy \ input}$	$\frac{ut}{2}$ × 100	Efficiency can be expressed as percentage	

Unit 3: Electric charge (topic 17, 19 and 20 from the syllabus)

1	Electric field intensity E:	between the two parallel plates	due to point charge Q on charge q			
	force on a unit charge q	$E = \frac{V}{V}$	$E = \frac{F}{-}$			
	at any point around		, , , , , , , , , , , , , , , , , , ,			
	another charge Q	uniform between the plates	decreases with distance increase,			
		separation d, unit is Vm ²	unit is NC ⁻¹			
2	Current: Rate of flow of	$I - \frac{Q}{2}$	<i>I</i> is the current in amperes (A),			
	charges in a conductor	t = t	Q is the charge in coulombs (C)			
			t is the time in seconds (s)			
3	Current path	In circuits the current always choose	the easiest path			
4	Conduction of electric	in electrolyte liquids due chemical r	reaction, ions \rightarrow electrolysis			
_	charge	in liquids (eg mercury) or solids (m	etals) due to free electrons \rightarrow conduction			
5	Ohms law	Voltage across the resistor is	V is the voltage in volts (V),			
		directly proportional to current,	<i>I</i> is the current in amperes (A) and			
		V∝I or	R is resistance in ohms (Ω)			
		$\frac{V}{-} = R$	$\cdot O^*$			
6	¥7. J.	<u> </u>				
0	Voltage	Energy per unit charge	Q is the charge in coulombs (C),			
		$V = \frac{Lhergy}{2}$	V is the voltage in volts (V)			
-		Q	Energy is in joules (J)			
7	Electromotive force(emf)	e.m.f. = lost volts + terminal p.a	the energy transferred to electrical			
		e.m.f.=Ir+IR	energy and when IC charge passes			
0		unit of emf is volts (V)	through a circuit.			
ð	Max. Power aissipatea	$P = \frac{E^2 R}{E^2 R}$	Max. power P when $K=r$, E is the emf			
	by the cell	$(R+r)^2$				
9	Resistance and resistivity	R = 2	<i>R</i> is the resistance a resistor,			
			L is the length of a resistor in meters			
		ρ is the resistivity of resistor in Ω .m	A is the area of cross-section of a			
10			resistor in m			
10	Circuit	In series circuit \rightarrow the current stays t	he same and voltage divides			
11		In parallel circuit \rightarrow the voltage stay	s the same and current alviaes			
11	Resistance in series	$R = R_1 + R_2 + R_3 + \cdots$	R , R_1 , R_2 and R_3 are resistances of			
12	Resistance in parallel	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$	resistor in ohms			
1.0		$\begin{array}{c c} R & R_1 & R_2 & R_3 \end{array}$				
13	Potential divider	$\frac{V_1}{V_1} = \frac{R_1}{V_1}$	V_1 voltage across R_1			
		$V_2 R_2$	V_2 voltage across R_2			
14	Potential divider	$V_2 = \left(\frac{R_2}{R_2}\right) \times V$	$V_{4} = \left(\frac{R_{1}}{M_{1}}\right) \times V$			
	(V total voltage)	$R_1 + R_2$	$V_1 = \langle R_1 + R_2 \rangle^{\prime} \wedge V$			
15	Power	$P = I \times V$ $P = I^2 \times R$ $P = \frac{V^2}{R}$	P is the power in watts (W)			
16	Power	Energy	The unit of energy is joules (J)			
		$P = \frac{1}{time}$	5 62 10 5 10 10 10			
17	I-V Characteristics	metals diode fil	ament thermistor LDR			
		$I\uparrow, V\uparrow$ I in one direction $V\uparrow, I$	$T\uparrow, R\uparrow, I\downarrow \qquad T\uparrow, R\downarrow, I\uparrow \qquad L\uparrow, R\downarrow. I\uparrow$			
18	Kirchhoff's law	$\sum I = 0$	$\sum EMF = \sum IR$			
19	Cathode rays	Stream of electrons emitted from hea	ted metal (cathode) are called cathode			
		rays and the process of emission is co	alled thermionic emission.			

Important Equations for AS Physics - 9702 www.youtube.com/megalecture

Prepared by Faisal Jaffer, Nov 2011

Page 5 of 9

mob: +92 323 509 4443, email: megalecture@gmail.com⁶

Unit 4: Matter (topic 9, and 10 from the syllabus)

1	Density: ratio of mass to volume acm ⁻³ kam ⁻³	$\rho = \frac{m}{V}$	=m/V where m is the mass and V is evol.					
2	Kinetic molecular	tiny particles, in constant of	collision, held	by strong el	ectri	c force, large empty		
3	Kinetic molecular theory of matter - energies	space, temp increases the speed of parti Solids: L vibrates at mean position vibrational called vibrational energy translation		Liquids: Gase al energy and Vibrationa nal (movement) ranslation		Gases: Vibrational, translational and rotational energies		
4	Brownian Motion	Random, zigzag motion of	particles					
5	Pressure, p	force annlied at right angle to an object				Unit is pascal (Pa)		
		$p = \frac{y - 11}{area of}$	f contact					
6	Pressure due to liquid	$p = \rho \times$	g imes h		ρ is and	density, g is gravity h is depth		
7	Kinetic energy of the particles of a substance	proportional	to the therma	al energy of a	a sub	ostance		
8	Potential energy of the particles of a substance	Due to electrosta	tic force betw	een particle.	s of a	a substance		
9	Types of solids (based on the arrangement of atoms or molecules)	Crystalline solids: N Atoms or molecules are arranged in regular three dimensional pattern			Non-crystalline or amorphous solids: Atoms or molecules are not arranged in regular pattern			
10	Hooke's Law	Polymer solids are either crystalline polymer if the molecules are arranged some form of regular pattern or amorphous polymer if there is no particul systematic arrangement The extension of a spring Δx is directly proportional to the force applied F_a provide the elastic limit is not reached $F_{app} = kx$ or						
11	Elastic limit	k is the spring constant and Gradient or slope of the gra axis) is the elastic limit of c	<u>F_s is the restant with between for spring</u>	oring force o force F (y-axi	of spr is) a	ring nd extension x (x-		
12	Stress σ (unit pascal)	$\sigma = \frac{F}{A}$	1 0	F is the fo area of cr to the force	rce a oss-s e	applied and A is the ection perpendicular		
13	Strain ε (no unit)	$\varepsilon = \frac{L}{x}$		x is the ch the origina	hange in length and L is nal length			
14	Young modulus E (unit is pascal)	$E = \frac{\sigma}{\varepsilon} = \frac{F/A}{x/L} = \frac{F}{A}$	$\frac{T \times L}{1 \times x}$	ratio	o of si	tress over strain		
15	Young modulus E	Gradient or slope of the grain of the grain of the grain of a state of a stat	aph between s pring	tress σ (y-ax	cis) a	nd strain ε (x-axis)		
16	Elastic Hysteresis loop	The difference between the expansion to when it is retu hysteresis loop. The area u length for example rubber	areas covered wrning back to nder this loop it is u <u>sed</u> as vi	d by force- ez its original is the energ bration abso	xtens shap y dis. orber	ion during the e is called elastic sipated by change in		
17	Strain energy	$W = \frac{1}{2}kx^2 = \frac{1}{2}$	Fx	It is the e due to ch The area graph is	energ ange und strai	gy stored in an object e of shape or size. er force-extension in energy		

Important Equations for AS Physics - 9702

Prepared by Faisal Jaffer, Nov 2011

www.youtube.com/megalecture Page 6 of 9

mob: +92 323 509 4443, email: megalecture@gmail.com⁷

18	Strain energy per unit volume	$= \frac{1}{2} \times \frac{F}{A} \times \frac{x}{L}$ $= \frac{1}{2} \times stress \times strain$	The area under the stress-strain graph is called strain energy per unit volume. The unit of energy is joules (J).
19	Ductile and brittle	Ductile:	Brittle:
	material	\rightarrow drawn into wire without breaking	\rightarrow cannot drawn into wire
		\rightarrow small elastic region and large ductile	\rightarrow small or large elastic region
		\rightarrow eg copper wire	but small ductile region, eg glass

Unit 4: Nuclear physics (topic 27 from the syllabus)

1	Elementary particles	Proton:	Electron:		Neutron:			
	of an atom	Positive charge,	nega	tive charge,	no charge,			
	·	inside the nucleus,	revolve around the nuclei		s, inside the nucleus,			
		same mass as neutron	mass is 1/1836 of proton		same mass as proton			
2	Nucleon no 'A'	also called mass number	also called mass number or atomic weight, it is sum of protons and neutrons					
3	Proton no 'Z'	also called atomic numb	also called atomic number, total number of protons					
4	Alpha particles	Helium nucleus		Ň	<u></u> 4 <i>He</i>			
	α-particles	Stopped by paper		Vor	-			
		Highest ionization poten	etial		$\frac{4}{2}\alpha$			
5	Beta-particles	Fast moving electrons		0,	0 1e			
	β -particles	Stopped by aluminum	~	or	-			
		Less ionization potentia	l		${}^{0}_{-1}\beta$			
6	Gamma-particles	Electromagnetic radiation	on		0			
	y-particles	Only stopped by thick a	sheet of lead	ł	ōγ			
		Least ionization potentic	Least ionization potentia					
7	Alpha decay	$A_{\rm X} \rightarrow A^{-4_{\rm X}} \rightarrow A_{\rm H}$		Parent nuclei 2	nuclei X emit two protons and two			
		$Z^{\Lambda} \Rightarrow Z^{-2I} + 2^{II}e^{+}$	energy	neutrons to ma	to make alpha particle			
8	Beta decay			In parent nucle	ent nuclei X one of the neutrons			
		$^{A}_{Z}X \Rightarrow ^{A}_{Z+1}X + ^{0}_{-1}\beta + ^{0}_{-1}\beta$	energy changes in	changes into n	nto neutron and electron. The			
		0.1		electron emits	as beta			
9	Gamma decay	$A_Z X \Rightarrow {}_Z^A Y + {}_0^0 \gamma \qquad \qquad Gau from from from from from from from from$		Gamma decay is the simple loss of energy				
				from the nucles	om the nucleus			
10	Radioactivity is a	Does not depend upon the	he environm	ental factors eg	atm. Pressure,			
	spontaneous process	emperature, humidity, b	prightness et	С				
11	Radioactivity is a	All the nuclei have equa	l probability	of decay at any	time, cannot predict			
	random process	which nucleus will emit	radiation.					
12	Half-life	Time in which the activity	ty or mass oj	f a radioactive .	substance becomes half			
13	Atomic symbol	Α.	7	A is	the total no of protons and			
		$\frac{11}{7}$	$A = \frac{A}{7X}$					
		<i>Examples:</i> ${}_{1}^{1}H, {}_{6}^{12}C, {}_{8}^{16}O$			the total no of protons			
14	Isotopes	Elements having atoms of	of same num	ber of Fa	$E_{\alpha} = \frac{12}{12} \int \frac{14}{14} \int \frac{11}{14} \int \frac{11}{14} \frac{11}{14} = \frac{11}{14} \int \frac{11}{14} \frac{11}{14} \frac{11}{14} = \frac{11}{14} \int \frac{11}{14} $			
		protons but different number of neutrons			$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

Important Equations for AS Physics - 9702 www.youtube.com/megalecture

Prepared by Faisal Jaffer, Nov 2011

Unit 5: Waves (topic 15 and 16 from the syllabus)

1	Ways squation 1	$f \sim 1$	y is the speed of y and in ms^{-1}				
1	wave equation 1	$\nu = j \times \lambda$	f is the frequency in Hz				
			<i>f</i> is the frequency in Hz				
			λ is the wavelength in metre				
2	Wave equation 2	f _ 1	<i>T</i> is the time period of wave in				
		$J = \overline{T}$	second				
3	Movement of the particles	Longitudinal waves=> back and	forth same direction as waves				
	of the medium	Transverse waves=> perpendicu	lar to the direction of waves				
4	Wavelength ' λ '	Distance between two crests or tw	vo troughs, unit metre (m)				
5	Frequency 'f'	Total number of waves in one second unit hertz (Hz)					
6	Time period 'T'	Time taken for one complete way	e unit second (s)				
7	Speed of wave motion 'v'	Distance move by crest in direction	on of wave in 1 second unit ms^{-1}				
8	Displacement of particle	Distance move by crest in direction	its mean position in either				
0	bisplacement of particle	direction unit metre (m)	iis mean position in either				
0	Amplituda 'a'	The maximum distance move by t	ha partiala unit matra (m)				
<i>y</i>	Ways fronts	Permanentation of energy of a way	a by straight line normandicular				
10	wave froms	Kepresentation of crests of a wav	e by straight the perpendicular				
		to the direction of wave. Distance	e between two wave fronts is				
1.1		wavelength.					
11	Progressive wave	Continuous waves created by a s	ource				
12	Phase difference	When the crests and troughs of tw	vo waves do not overlap each				
		other then two waves have phase	difference				
13	Coherent waves	Two waves of same properties an	d originate from same source				
14	Intensity of a wave 'I'	$I = \frac{P}{P}$	<i>P</i> the amount of wave energy				
		I = A	per second at particular point				
		Unit of intensity is Wm ⁻²	falling on surface area A				
15	Intensity of a wave 'I'	Intensity of wave is directly prope	ortional to the amplitude square				
		I 🛛	a^2				
16	Compression region	When particles of a medium com	e close to each other				
17	Rarefaction region	Where particles of a medium mov	e further apart from each other				
18	Diffraction	When waves pass through a narr	ow gap, they spread out.				
19	Interference of light waves	Constructive interference:	Destructive interference:				
		When the crests-crests and	When crests-troughs of two				
		troughs-troughs of two waves	waves overlap each other,				
		overlap each other. amplitudes	amplitudes cancel each other				
		become added	In Provide Contract Contract Contract				
20	Young double slit						
20	experiment	For bright fringes:	For dark fringes:				
	experiment	$x = \frac{h\lambda D}{m}$	$x = \frac{(n+1)\lambda D}{n}$				
		a	a				
		a is the distance between the two	slits, D is the distance between				
		slits and the screen, λ is the wave	length of light, n is the order of				
		bright or dark fringe counting from	om the first bright fringe at the				
		centre, x is the distance of nth fri	nge from the centre				
21	Diffraction grating	d is the	gap between two grating lines. θ				
		is the ar	agle of the order of maxima. n is				
		$d\sin\theta = n\lambda$ the order	r of a maxima and λ is the				
		wavelen	eth				
22	Polarized light	When the electric and magnetic f	ield of light waves oscillates				
	- countrou ingiti	only in one dimensions this proc	snew jield of light waves oscillates				
		light into polarized light is called polarization					
22	Standing or stationary	A wave results when two waves w	which are traveling in opposite				
25	wayes	A wave results when two waves which are traveling in opposite direction and which have the same speed and frequency and					
	waves	approx equal applitudes are sur	ne speeu unu frequency unu				
1	approx. equal amplitudes, are superimposed (overlapped)						

Important Equations for AS Physics - 9702 www.youtube.com/megalecture

Prepared by Faisal Jaffer, Nov 2011

24	<i>G</i>	•		. 1 1	D '		G	
24	Stationary	waves in a	Funda	mental mode	First ove	ertone or	Second	overtone or
	string of le	ngth 'L' and	or firs	t harmonic:	second h	armonic:	third he	armonic:
	speed of we	ave is 'v'	$L = \frac{\lambda}{2}$	or $f_1 = \frac{v}{2I}$	$L = \lambda$	or $f_2 = \frac{v}{L}$	$L = \frac{3\lambda}{2}$	or $f_3 = \frac{3\nu}{2L}$
			(one loop) (two loops)			(three	loops)	
25	Stationary	waves in a		Fe	or nth harn	onic freau	ency:	1
	string of length 'L'			f	$-\frac{nv}{what}$	pro n = 1.2	3	
	~ .	· · ·		Jn	$\frac{2L}{2L}$	$n \in n = 1, 2,$		
26	Stationary	wave in an air	Funda	mental mode	First ove	ertone or	Second	overtone or
	column one	e end open one	or firs	t harmonic:	second h	armonic:	third he	armonic:
	end close		$L = \frac{\lambda}{4}$	or $f_1 = \frac{v}{4L}$	$L = \frac{3}{4}\lambda$	or $f_2 = \frac{31}{41}$	$L = \frac{5\lambda}{4}$	or $f_3 = \frac{5v}{4L}$
			(1/2 loo	(p)	$(1 \frac{1}{2} loc$	pps)	$(1 \frac{1}{2})$	loops)
				Г, Г	.1.1	• •	`	1 /
				Fa	or nth harn $(2n 1)n$	ionic freque	ency:	
				f_n	$=\frac{(2n-1)v}{4l}$	where $n=1$	1,2,3.	
27	Speed of li	aht	In air	$3 \times 10^8 m/s$	In alass. 2	$\sqrt{10^8}m/s$	In water	$2.25 \times 10^8 m/s$
27	Electroma	zni matic Spactrum:-	\rightarrow this w	$\frac{3\times10}{10}$ m/s	in giuss. 2.	x10 m/s	n water	$2.23 \times 10 \text{ m/s}$
20	Gamma ra	$y_s \leftrightarrow X$ -rays $\leftrightarrow I$	$V \leftrightarrow V$	isihle lioht ↔	$IR \leftrightarrow Micr$	$o waves \leftrightarrow$	Proio wa	ves
29	Gumma ra		The	Flectromagnet	ic Snectrum	o mares ()	<u>Iluais</u> wa	
27			inc	Chart by LASP/University of Co	olorado, Boulder)	
						C		
		10-6 nm						
		10-5 nm						
		10-4 nm	Gamma-Rays					
		10-3 mm	-					
		10 2 mm						
		10-2 mm 1 A			\smile			
		10-1 hm		X-Rave			ŭolet.	
		<u>1 nm</u>						
		10 nm				1	naigo	
		100 nm		Ultraviolet		1	lue	
		<u>10³ nm 1 μm</u>	<u> </u>	Visible Light	Visible Light: ~400 nm - ~700 nm		freen	
		<u>10 µm</u>	$-\overline{\partial}$	Near Infrared		2	/ellow	
		<u>100 µm</u>	Far Infrared		0		Drange	
		1000 µm 1 mm				F	ted	
		10 mm 🔨 1 cm						
		10 cm		Microwave				
		100 cm 1 m			UHF			
		10 m			VHF			
		100 m			HF			
		1000 m 1 km			MF			
		10 km		Radio	LF		22	
		100 km						
		11/0-			Andie	,	O	
		10 Mm		-				
		_100 Mill		-				
		nm	=nanometer	, A=angstrom, μm=m ter m=meter km=kilo	icrometer, mm=1 meter Mm=Me	nillimeter, sameter		
		cm=cenumeter, m=meter, km=knometer, Mm=Megameter						

mob: +92 323 509 4443, email: megalecture@gmail.com⁹