

whatsapp: +92 323 509 4443, email: megalecture@gmail.com WWW.MEGALECTURE.COM

Equations to Learn			
kinetic energy = $\frac{1}{2}$ × mass × speed ²	$E_K = \frac{1}{2}mv^2$		
GPE = mass × gravitational field strength × he	$E_P = mgh$		
power = $\frac{\text{work done}}{\text{time taken}} = \frac{\text{energy transferred}}{\text{time taken}}$	$P = \frac{W}{t} = \frac{E}{t}$		
$\begin{array}{l} \mbox{efficiency} = \frac{\mbox{useful energy output}}{\mbox{total energy input}} \\ \mbox{efficiency} = \frac{\mbox{useful power output}}{\mbox{total power input}} \end{array}$			
elastic potential energy = $0.5 \times \text{spring consta}$ (extension) ²	$E_e = \frac{1}{2}ke^2$		
change in thermal energy = mass × specific heat capacity × temperature cha	$\Delta E = mc \Delta \theta$		

Electricity

Equations to Learn	
charge flow = current × time	Q = I t
potential difference = current × resistance	V = I R
total resistance in series = resistance of component 1 +resistance of component 2	$R_T = R_1 + R_2$
total resistance in parallel	$R_T = \frac{R_1 x R_2}{R_1 + R_2}$
Resistance of a wire of length I, cross sectional area A and resistivity ρ	$R = \frac{\rho l}{A}$
power = current × potential difference	P = I V
power = $(current)^2 \times resistance$	$P = I^2 R$
energy transferred = power × time	E = Pt
energy transferred = charge flow × potential difference	E = QV

Particle Model of Matter

Equations to Learn			
density = wolume	$ \rho = \frac{m}{V} $		
Pressure in liquids: density of liquid x Gravitational field strength x depth	Ρ = ρg h		
change in thermal energy = mass × specific heat capacity × temperature char	nge $\Delta E = mc\Delta \theta$		
thermal energy for a change in state = mass × specific latent he	eat $E = mL$		
for a gas: pressure × volume / Temperatu = constant	$\frac{PV}{T} = constant$		
Waves			
Equations to Learn			
wave speed = frequency × wavelength	$v = f \lambda$		
time period = $\frac{1}{\text{frequency}}$	$T = \frac{1}{f}$		
$magnification = \frac{image height}{object height}$	$M = \frac{h_{image}}{h_{object}}$		
Snell's law for refraction	$n_1 sin(i) = n_2 sin(r)$		

Magnetism and Electromagnetism

Equations to learn	
Force = magnetic flux density × current × length of conductor in magnetic field	F = BIl
potential difference across primary coil	
potential difference across secondary coil number of turns in primary coil	$\frac{V_P}{V_S} = \frac{N_P}{N_S}$
number of turns in secondary coil	
p.d across primary × current in primary = p.d. across secondary x current in secondary	$V_P I_P = V_S I_S$

Forces

Equations to Learn	
weight = mass × gravitational field strength	W = m g
work done = force × distance (moved along the line of action of the force)	W = Fs
Elastic force = spring constant \times extension	F = ke
moment of a force = force × distance (perpendicular to the direction of the force)	M = Fd
pressure = $\frac{\text{force normal to a surface}}{\text{area of that surface}}$	$p = \frac{F}{A}$
distance travelled = speed \times time (if v constant)	s = vt
acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$
$= \frac{\text{final velocity-initial velocity}}{\text{time taken}}$	$=\frac{v-u}{t}$
resultant force = mass \times acceleration	F = ma
Displacement for an accelerated motion	$s = ut + \frac{1}{2}at^2$
Alternative equation for displacement	$s = \frac{(u+v)t}{2}$
Pressure = height of column × density of liquid × gravitational field strength	p = h ho g
(final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2$ $= 2as$

Atomic physics and radioactivity

There are no equations in this section of the course

••• MEGA LECTURE

www.youtube.com/megalecture