Exercise 2.8 (Solutions) Page 46
Textbook of Algebra and Trigonometry for Class XI
Available online @ http://www.megalecture.com, Version: 3

Question \# 1

Operation \oplus performed on the two-member set $G=\{0,1\}$ is shown in the adjoining table. Answers the questions:
(i) Name the identity element if it exists?
(ii) What is the inverse of 1 ?
(iii)Is the set G , under the given operation a group?

Abelian and non-abelian?

\oplus	0	1
0	1	1
1	1	0

Solutions

i) From the given table we have

$$
0+0=0 \text { and } 0+1=1
$$

This show that 0 is the identity element.
ii) Since $1+1=0$ (identity element) so the inverse
of 1 is 1 .
iii) It is clear from table that element of the given set satisfy closure law, associative law, identity law and inverse law thus given set is group under \oplus.
Also it satisfies commutative law so it is an abelian group.

Question \# 2

The operation \oplus as performed on the set $\{0,1,2,3\}$ is shown in the adjoining table, shown that the set is an Abelian group?

Solution

Suppose $G=\{0,1,2,3\}$
i) The given table show that eact element of the table is a member of G thus clestée law holds.
ii) \oplus is associative in G.
iii) Table show that 0 isfidêntity element w.r.t. \oplus.
iv) Since $0+0=0,0+3=0,2+2=0,3+1=0$ $\Rightarrow 0^{-1}=0,1^{-1}=32^{-1}=2,3^{-1}=1$

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

v) As the table is symmetric w.r.t. to the principal diagonal. Hence commutative law holds.

Question \# 3

For each of the following sets, determine whether or not the set forms a group with respect to the indicated operation. From above table solve these (i-v) options.

Solution

(i) As $0 \in \mathbb{Q}$, multiplicative inverse of 0 in not in set \mathbb{Q}. Therefore the set of rational number is not a group w.r.t to ".".
(ii) a- Closure property holds in \mathbb{Q} under + because sum of two rational number is also rational.
b - Associative property holds in \mathbb{Q} under addition.
$c-0 \in \mathbb{Q}$ is an identity element.
whatsapp: +92 3235094443, email: megalecture@gmail.com FSc-I / 2.8-2
d - If $a \in \mathbb{Q}$ then additive inverse $-a \in \mathbb{Q}$ such that $a+(-a)=(-a)+a=0$.
Therefore the set of rational number is group under addition.
(iii) a - Since for $a, b \in \mathbb{Q}^{+}, a b \in \mathbb{Q}^{+}$thus closure law holds.
b - For $a, b, c \in \mathbb{Q}, \quad a(b c)=(a b) c$ thus associative law holds.
c - Since $1 \in \mathbb{Q}^{+}$such that for $a \in \mathbb{Q}^{+}, a \times 1=1 \times a=a$. Hence 1 is the identity element.
d - For $a \in \mathbb{Q}^{+}, \quad \frac{1}{a} \in \mathbb{Q}^{+}$such that $a \times \frac{1}{a}=\frac{1}{a} \times a=1$. Thus inverse of a is $\frac{1}{a}$.
Hence \mathbb{Q}^{+}is group under addition.
(iv) Since $\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots \ldots \ldots \ldots\}$
a - Since sum of integers is an integer therefore for $a, b \in \mathbb{Z}, a+b \in \mathbb{Z}$.
b - Since $a+(b+c)=(a+b)+c$ thus associative law holds in \mathbb{Z}.
c - Since $0 \in \mathbb{Z}$ such that for $a \in \mathbb{Z}, a+0=0+a=\mathbb{Z}$. Thus 0 an identity element.
d - For $a \in \mathbb{Z},-a \in \mathbb{Z}$ such that $a+(-a)=(-a)+a=0$. Thus inverse of a is $-a$.
(v) Since $\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3$, \qquad
For any $a \in \mathbb{Z}$ the multiplicative inverse of a is $\frac{1}{a} \notin \mathbb{Z}$. Hence \mathbb{Z} is not a group under multiplication.

Question \# 4

Show that the adjoining table represents the sums of the elements of the set $\{E, O\}$.
What is the identity element of this set? Show that this set is abelian group..

Solution

As $\mathrm{E}+\mathrm{E}=\mathrm{E}, \mathrm{E}+\mathrm{O}=\mathrm{O}, \mathrm{O}+\mathrm{O}=\mathrm{E}$
Thus the table represents the sums of the elements of set $\{E, O\}$.
The identity element of the set is E because

$$
E+E=E+E=E \quad \& \quad E+O=O+E=E .
$$

\oplus	E	O
E	E	O
O	O	E

i) From the table each element belong to the set $\{E, O\}$.

Hence closure law is satisfied.
ii) $\quad \oplus$ is associative in $\{E, O\}$
iii) $\quad E$ is the identity element of w.r.t to \oplus
iv) As $O+O=E$ and $E+E=E$, thus inverse of O is O and inverse of E is E.
v) As the table is symmetric about the principle diagonal therefore \oplus is commutative.
Hence $\{E, O\}$ is abelian group under \oplus.

Question \# 5

Show that the set $\left\{1, \omega, \omega^{2}\right\}$, when $\omega^{3}=1$ is an abelian group w.r.t. ordinary multiplication.

Solution

Suppose $G=\left\{1, \omega, \omega^{2}\right\}$

\otimes	1	ω	ω^{2}
1	1	ω	ω^{2}
ω	ω	ω^{2}	1
ω^{2}	ω^{2}	1	ω

i) A table show that all the entries belong to G.
ii) Associative law holds in G w.r.t. multiplication.
e.g. $\quad 1 \times\left(\omega \times \omega^{2}\right)=1 \times 1=1$

$$
(1 \times \omega) \times \omega^{2}=\omega \times \omega^{2}=1
$$

iii) Since $1 \times 1=1,1 \times \omega=\omega \times 1=\omega, 1 \times \omega^{2}=\omega^{2} \times 1=\omega^{2}$

Thus 1 is an identity element in G.
iv) Since $1 \times 1=1 \times 1=1, \omega \times \omega^{2}=\omega^{2} \times \omega=1, \omega^{2} \times \omega=\omega \times \omega^{2}=1$
therefore inverse of 1 is 1 , inverse of ω is ω^{2}, inverse of ω^{2} is ω.
v) As table is symmetric about principle diagonal therefore commutative law holds in G.
Hence G is an abelian group under multiplication.

Question \# 6

If G is a group under the operation $*$ and $a, b \in G$, find the solutions of the equations: $a * x=b, \quad x * a=b$

Solution

Given that G is a group under the operation $*$ and $a, b \in G$ such that

$$
a * x=b
$$

As $a \in G$ and G is group so $a^{-1} \in G$ such that

$$
\begin{aligned}
& a^{-1} *(a * x)=a^{-1} * b \\
\Rightarrow & \left(a^{-1} * a\right) * x=a^{-1} * b \\
\Rightarrow & e * x=a^{-1} * b \\
\Rightarrow & x=a^{-1} * b
\end{aligned}
$$

And for

$$
\begin{array}{rll}
& x * a=b & \\
\Rightarrow & (x * a) * a^{-1} * a^{-1} & \text { For } a \in G, a^{-1} \in G \\
\Rightarrow & x *\left(a * a^{-1}\right)=b * a^{-1} & \text { as associative law hold in } G . \\
\Rightarrow & x * e^{*}+a^{-1} & \text { by inverse law. } \\
\Rightarrow & x \cdot b * a^{-1} & \text { by identity law. }
\end{array}
$$

Question \# 7

Show that the set consisting of elements of the form $a+\sqrt{3} b$ (a, b being rational), is an abelian group w.r.t. addition.

Solution

Consider $G=\{a+\sqrt{3} b \mid a, b \in \mathbb{Q}\}$
i) Let $a+\sqrt{3} b, c+\sqrt{3} d \in G$, where $a, b, c \& d$ are rational.

$$
(a+\sqrt{3} b)+(c+\sqrt{3} d)=(a+c)+\sqrt{3}(b+d)=a^{\prime}+\sqrt{3} b^{\prime} \in G
$$

where $a^{\prime}=a+c$ and $b^{\prime}=b+d$ are rational as sum of rational is rational.
Thus closure law holds in G under addition.
ii) For $a+\sqrt{3} b, c+\sqrt{3} d, e+\sqrt{3} f \in G$

$$
\begin{aligned}
(a+\sqrt{3} b)+((c+\sqrt{3} d)+(e+\sqrt{3} f)) & =(a+\sqrt{3} b)+((c+e)+\sqrt{3}(d+f)) \\
& =(a+(c+e))+\sqrt{3}(b+(d+f)) \\
& =((a+c)+e)+\sqrt{3}((b+d)+f)
\end{aligned}
$$

As associative law hold in \mathbb{Q}

$$
=((a+c)+\sqrt{3}(b+d))+(e+\sqrt{3} f)
$$

$$
=((a+\sqrt{3} b)+(c+\sqrt{3} d))+(e+\sqrt{3} f)
$$

Thus associative law hold in G under addition.
iii) $\quad 0+\sqrt{3} \cdot 0 \in G$ as 0 is a rational such that for any $a+\sqrt{3} b \in G$

$$
(a+\sqrt{3} b)+(0+\sqrt{3} \cdot 0)=(a+0)+\sqrt{3}(b+0)=a+\sqrt{3} b
$$

And

$$
(0+\sqrt{3} \cdot 0)+(a+\sqrt{3} b)=(0+a)+\sqrt{3}(0+b)=a+\sqrt{3} b
$$

Thus $0+\sqrt{3} \cdot 0$ is an identity element in G.
iv) For $a+\sqrt{3} b \in G$ where $\mathrm{a} \& \mathrm{~b}$ are rational there exit rational $-a \&-b$ such that

$$
(a+\sqrt{3} b)+((-a)+\sqrt{3}(-b))=(a+(-a))+\sqrt{3}(b+(-b))=0+\sqrt{3} \cdot 0
$$

\& $((-a)+\sqrt{3}(-b))+(a+\sqrt{3} b)=((-a)+a)+\sqrt{3}((-b)+b)=0+\sqrt{3} \cdot 0$
Thus inverse of $a+\sqrt{3} b$ is $(-a)+\sqrt{3}(-b)$ exists in G.
v) For $a+\sqrt{3} b, c+\sqrt{3} d \in G$

$$
\begin{aligned}
(a+\sqrt{3} b)+(c+\sqrt{3} d) & =(a+c)+\sqrt{3}(b+d) \\
& =(c+a)+\sqrt{3}(d+b) \quad \text { As commutative law hold in } \mathbb{Q} . \\
& =(c+d \sqrt{3})+(a+\sqrt{3} b)
\end{aligned}
$$

Thus Commutative law holds in G under addition.
And hence G is an abelian group under addition.

Question 8

Determine whether $(P(S), *)$, where $*$ stands for intersection is a semi group, a monoid or neither. If it is a monoid, specify its identity.

Solution

Let $A, B \in P(S)$ where $A \& B$ are subsets of S.
As intersection of two subsets of S is subset of S.
Therefore $A * B=A \cap B \in P(S)$. Thus closure law holds in $P(S)$.
For $A, B, C \in P(S)$
$A *(B * C)=A \cap(B \cap C)=(A \cap B) \cap C=(A * B) * C$
Thus associative law holds and $P(S)$.
And hence $(P(S), *)$ is a semi-group.
For $A \in P(S)$ where A is a subset of S we have $S \in P(S)$ such that

$$
A \cap S=S \cap A=A
$$

Thus S is an identity element in $P(S)$. And hence $(P(S), *)$ is a monoid.

Question 9

Complete the following table to obtain a semi-group under *

Solution

Let x_{1} and x_{2} be the required elements.
By associative law

$$
\begin{aligned}
& (a * a) * a=a *(a * a) \\
& \Rightarrow \quad c * a=a * c \\
& \Rightarrow \quad x_{1}=b
\end{aligned}
$$

$*$	a	b	c
a	c	a	b
b	a	b	c
c	x_{1}	x_{2}	a

Now again by associative law

$$
\begin{aligned}
&(a * a) * b=a *(a * b) \\
& \Rightarrow \quad c * b=a * a \quad \Rightarrow \quad x_{2}=c
\end{aligned}
$$

Question 10

Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication.
Solution Let G be the all non-singular 2×2 matrices over the real field.
i) Let $A, B \in G$ then $A_{2 \times 2} \times B_{2 \times 2}=C_{2 \times 2} \in G$

Thus closure law holds in G under multiplication.
ii) Associative law in matrices of same order under metiplication holds. therefore for $A, B, C \in G$

$$
A \times(B \times C)=(A \times B) \times C
$$

iii) $\quad I_{2 \times 2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is a non-singular matrix sueh that

$$
A_{2 \times 2} \times I_{2 \times 2}=I_{2 \times 0} \times A_{2 \times 2}=A_{2 \times 2}
$$

Thus $I_{2 \times 2}$ is an identity element in \hat{C},
iv) Since inverse of non-singular square matrix exists, therefore for $A \in G$ there expst $A^{-1} \in G$ such that $A A^{-1}=A^{-1} A=I$.
v) As we know for any two matrices $A, B \in G, A B \neq B A$ in general.

Therefore commutative aw does not holds in G under multiplication.
Hence the set of all 2×2 non-singular matrices over a real field is a non-abelian group under multiplication.

Book: Exercise 2.8 (Page 78)
Text Book of Algebra and Trigonometry Class XI
Punjab Textbook Board, Lahore.
Available online at http://www.megalecture.com in PDF

