Exercise 2.8 (Solutions) Page 46 Megalecture Textbook of Algebra and Trigonometry for Class XI Let's Educate Pakistan! Available online @ http://www.megalecture.com, Version: 3 **Question #1** Operation \oplus performed on the two-member set $G = \{0,1\}$ is shown in the adjoining table. Answers the questions: (i) Name the identity element if it exists?

What is the inverse of 1? (ii)

(iii) Is the set G, under the given operation a group?

Abelian and non-abelian?

Solutions

From the given table we have i)

0 + 0 = 0 and 0 + 1 = 1

This show that 0 is the identity element.

Since 1+1=0 (identity element) so the inverse ii)

of 1 is 1.

iii) It is clear from table that element of the given set

satisfy closure law, associative law, identity law and inverse law

thus given set is group under \oplus .

Also it satisfies commutative law so it is an abelian group.

Question #2

The operation \oplus as performed on the set {0,1,2,3} is shown in the adjoining table,

shown that the set is an Abelian group?

Solution

Suppose $G = \{0, 1, 2, 3\}$

The given table show that each element of the i) table is a member of G thus closure law holds.

ii) \oplus is associative in G.

iii) Table show that 0 is identity element w.r.t.
$$\oplus$$

iv) Since
$$0 + 0 = 0$$
, $1 + 3 = 0$, $2 + 2 = 0$, $3 + 1 = 0$

$$\Rightarrow 0^{-1} = 0, 1^{-1} = 3, 2^{-1} = 2, 3^{-1} = 1$$

v) As the table is symmetric w.r.t. to the principal diagonal. Hence commutative law holds.

Question #3

For each of the following sets, determine whether or not the set forms a group with respect to the indicated operation. From above table solve these (i-v) options.

Solution

As $0 \in \mathbb{Q}$, multiplicative inverse of 0 in not in set \mathbb{Q} . Therefore the set of (i) rational number is not a group w.r.t to ".".

a- Closure property holds in \mathbb{Q} under + because sum of two rational number is (ii) also rational.

b- Associative property holds in \mathbb{Q} under addition.

c- $0 \in \mathbb{Q}$ is an identity element.

WWW.MEGALECTURE.COM www.youtube.com/megalecture

\oplus	0	1
0	1	1
1	1	0

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

whatsapp: +92 323 509 4443, email: megalecture@gmail.com
FSc-I / 2.8 - 2

d- If $a \in \mathbb{Q}$ then additive inverse $-a \in \mathbb{Q}$ such that a + (-a) = (-a) + a = 0. Therefore the set of rational number is group under addition.

(iii) *a*- Since for $a, b \in \mathbb{Q}^+$, $ab \in \mathbb{Q}^+$ thus closure law holds. *b*- For $a, b, c \in \mathbb{Q}$, a(bc) = (ab)c thus associative law holds. *c*- Since $1 \in \mathbb{Q}^+$ such that for $a \in \mathbb{Q}^+$, $a \times 1 = 1 \times a = a$. Hence 1 is the identity element. *d*- For $a \in \mathbb{Q}^+$, $\frac{1}{a} \in \mathbb{Q}^+$ such that $a \times \frac{1}{a} = \frac{1}{a} \times a = 1$. Thus inverse of *a* is $\frac{1}{a}$. Hence \mathbb{Q}^+ is group under addition.

(iv) Since $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots, \}$

a-Since sum of integers is an integer therefore for $a, b \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

b-Since a + (b + c) = (a + b) + c thus associative law holds in \mathbb{Z} .

c-Since $0 \in \mathbb{Z}$ such that for $a \in \mathbb{Z}$, $a + 0 = 0 + a = \mathbb{Z}$. Thus 0 an identity element.

d- For $a \in \mathbb{Z}$, $-a \in \mathbb{Z}$ such that a + (-a) = (-a) + a = 0. Thus inverse of *a* is -a.

(v) Since $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots, \}$

For any $a \in \mathbb{Z}$ the multiplicative inverse of *a* is $\frac{1}{a} \notin \mathbb{Z}$. Hence \mathbb{Z} is not a group under

multiplication.

Question # 4

Show that the adjoining table represents the sums of the elements of the set $\{E, O\}$. What is the identity element of this set ? Show that this set is abelian group.. Solution

As E + E = E, E + O = O, O + O = E

Thus the table represents the sums of the elements of set $\{E, O\}$.

The identity element of the set is E because

 $E+E=E+E=E \quad \& \quad E+O=O+E=E \ .$

i) From the table each element belong to the set $\{E, O\}$.

Hence closure law is satisfied.

ii) \oplus is associative in $\{E, O\}$

iii) E is the identity element of w.r.t to \oplus

iv) As O + O = E and E + E = E, thus inverse of O is O and inverse of E is E.

v) As the table is symmetric about the principle diagonal therefore \oplus is commutative.

Hence $\{E, O\}$ is abelian group under \oplus .

Question # 5

Show that the set $\{1, \omega, \omega^2\}$, when $\omega^3 = 1$ is an abelian group w.r.t. ordinary

multiplication.

Solution

Suppose $G = \{1, \omega, \omega^2\}$

 	, iiidi j		
\otimes	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	ω

www.megalecture.com www.youtube.com/megalecture

Page 2 of 5

 $\begin{array}{c|c} \oplus & E & O \\ \hline E & E & O \\ \hline O & O & E \end{array}$

whatsapp: +92 323 509 4443, email: megalecture@gmail.com FSc-I / 2.8 - 3 A table show that all the entries belong to G. i) ii) Associative law holds in G w.r.t. multiplication. $1 \times (\omega \times \omega^2) = 1 \times 1 = 1$ e.g. $(1 \times \omega) \times \omega^2 = \omega \times \omega^2 = 1$ Since $1 \times 1 = 1$, $1 \times \omega = \omega \times 1 = \omega$, $1 \times \omega^2 = \omega^2 \times 1 = \omega^2$ iii) Thus 1 is an identity element in G. iv) Since $1 \times 1 = 1 \times 1 = 1$, $\omega \times \omega^2 = \omega^2 \times \omega = 1$, $\omega^2 \times \omega = \omega \times \omega^2 = 1$ therefore inverse of 1 is 1, inverse of ω is ω^2 , inverse of ω^2 is ω . As table is symmetric about principle diagonal therefore commutative law holds v) in G. Hence G is an abelian group under multiplication. **Ouestion #6** If G is a group under the operation * and $a, b \in G$, find the solutions of the equations: a * x = b, x * a = bSolution such that Given that G is a group under the operation * and $a, b \in G$ a * x = bAs $a \in G$ and G is group so $a^{-1} \in G$ such that $a^{-1} * (a * x) = a^{-1} * b$ $\Rightarrow (a^{-1} * a) * x = a^{-1} * b$ as associative law hold in G. $\Rightarrow e * x = a^{-1} * b$ by inverse law. $\Rightarrow x = a^{-1} * b$ by identity law. And for x * a = bFor $a \in G$, $a^{-1} \in G$

x * a = b $\Rightarrow (x * a) * a^{-1} = b * a^{-1}$ For $a \in G$, $a^{-1} \in G$ $\Rightarrow x * (a * a^{-1}) = b * a^{-1}$ as associative law hold in G. $\Rightarrow x * e = b * a^{-1}$ by inverse law. $\Rightarrow x = b * a^{-1}$ by identity law.

Question #7

Show that the set consisting of elements of the form $a + \sqrt{3}b$ (*a*,*b* being rational), is an abelian group w.r.t. addition.

Solution

Consider
$$G = \left\{ a + \sqrt{3}b \mid a, b \in \mathbb{Q} \right\}$$

i) Let $a + \sqrt{3}b, c + \sqrt{3}d \in G$, where $a, b, c \& d$ are rational.
 $\left(a + \sqrt{3}b\right) + \left(c + \sqrt{3}d\right) = (a + c) + \sqrt{3}(b + d) = a' + \sqrt{3}b' \in G$

where a' = a + c and b' = b + d are rational as sum of rational is rational. Thus closure law holds in G under addition.

ii) For $a + \sqrt{3}b$, $c + \sqrt{3}d$, $e + \sqrt{3}f \in G$

www.megalecture.com www.youtube.com/megalecture

whatsapp: +92 323 509 4443, email: megalecture@gmail.com FSc-I/2.8-4

$$(a + \sqrt{3}b) + ((c + \sqrt{3}d) + (e + \sqrt{3}f)) = (a + \sqrt{3}b) + ((c + e) + \sqrt{3}(d + f))$$
$$= (a + (c + e)) + \sqrt{3}(b + (d + f))$$
$$= ((a + c) + e) + \sqrt{3}((b + d) + f)$$

As associative law hold in \mathbb{Q}

$$= ((a+c) + \sqrt{3}(b+d)) + (e+\sqrt{3}f)$$
$$= ((a+\sqrt{3}b) + (c+\sqrt{3}d)) + (e+\sqrt{3}f)$$

Thus associative law hold in G under addition.

iii)
$$0+\sqrt{3} \cdot 0 \in G$$
 as 0 is a rational such that for any $a+\sqrt{3}b \in G$
 $(a+\sqrt{3}b)+(0+\sqrt{3}\cdot 0) = (a+0)+\sqrt{3}(b+0) = a+\sqrt{3}b$
And $(0+\sqrt{3}\cdot 0)+(a+\sqrt{3}b) = (0+a)+\sqrt{3}(0+b) = a+\sqrt{3}b$

Thus $0 + \sqrt{3} \cdot 0$ is an identity element in *G*.

iv) For $a + \sqrt{3}b \in G$ where a & b are rational there exit rational -a & -b such that $(a + \sqrt{3}b) + ((-a) + \sqrt{3}(-b)) = (a + (-a)) + \sqrt{3}(b + (-b)) = 0 + \sqrt{3} \cdot 0$ & $((-a) + \sqrt{3}(-b)) + (a + \sqrt{3}b) = ((-a) + a) + \sqrt{3}((-b) + b) = 0 + \sqrt{3} \cdot 0$

$$\frac{d}{dt} = \left(\left(\begin{array}{c} u \\ v \end{array} \right) + \sqrt{3} \left(\begin{array}{c} v \\ v \end{array} \right) \right) + \left(\begin{array}{c} u \\ v \end{array} \right) + \sqrt{3} \left(\begin{array}{c} v \\ v \end{array} \right) + \sqrt{3} \left(\left$$

Thus inverse of $a + \sqrt{3b}$ is $(-a) + \sqrt{3}(-b)$ exists in G.

v) For
$$a + \sqrt{3}b$$
, $c + \sqrt{3}d \in G$
 $(a + \sqrt{3}b) + (c + \sqrt{3}d) = (a + c) + \sqrt{3}(b + d)$
 $= (c + a) + \sqrt{3}(d + b)$ As commutative law hold in \mathbb{Q} .
 $= (c + d\sqrt{3}) + (a + \sqrt{3}b)$

Thus Commutative law holds in G under addition. And hence G is an abelian group under addition.

Question 8

Determine whether (P(S),*), where * stands for intersection is a semi group, a monoid or neither. If it is a monoid, specify its identity. *Solution*

Let $A, B \in P(S)$ where A & B are subsets of S.

As intersection of two subsets of *S* is subset of *S*.

Therefore $A * B = A \cap B \in P(S)$. Thus closure law holds in P(S).

For $A, B, C \in P(S)$

 $A * (B * C) = A \cap (B \cap C) = (A \cap B) \cap C = (A * B) * C$

Thus associative law holds and P(S).

And hence (P(S),*) is a semi-group.

For $A \in P(S)$ where A is a subset of S we have $S \in P(S)$ such that

$$A \cap S = S \cap A = A \; .$$

Thus S is an identity element in P(S). And hence (P(S),*) is a monoid.

WWW.MEGALECTURE.COM

www.youtube.com/megalecture

Question 9

Complete the following table to obtain a semi-group under * *Solution*

Let x_1 and x_2 be the required elements. By associative law

$$(a*a)*a = a*(a*a)$$

$$\Rightarrow c*a = a*c$$

$$\Rightarrow x_1 = b$$

Now again by associative law

$$(a*a)*b = a*(a*b)$$

$$\Rightarrow c*b = a*a \Rightarrow x_2 = c$$

*	а	b	С
a	С	а	b
b	а	b	С
С	x_1	<i>x</i> ₂	a

Question 10

Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication.

Solution Let G be the all non-singular 2×2 matrices over the real field.

i) Let $A, B \in G$ then $A_{2\times 2} \times B_{2\times 2} = C_{2\times 2} \in G$

Thus closure law holds in G under multiplication.

ii) Associative law in matrices of same order under multiplication holds. therefore for $A, B, C \in G$

$$A \times (B \times C) = (A \times B) \times C$$

iii)
$$I_{2\times 2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is a non-singular matrix such that
 $A_{2\times 2} \times I_{2\times 2} = I_{2\times 2} \times A_{2\times 2} = A_{2\times 2}$

Thus $I_{2\times 2}$ is an identity element in $S^{(1)}$

iv) Since inverse of non-singular square matrix exists,

therefore for $A \in G$ there exist $A^{-1} \in G$ such that $AA^{-1} = A^{-1}A = I$.

v) As we know for any two matrices $A, B \in G$, $AB \neq BA$ in general.

Therefore commutative law does not holds in G under multiplication.

Hence the set of all 2×2 non-singular matrices over a real field is a non-abelian group under multiplication.

Book: Exercise 2.8 (Page 78) Text Book of Algebra and Trigonometry Class XI Punjab Textbook Board, Lahore.

Available online at http://www.megalecture.com in PDF

