Exercise 2.4 (Solutions) Page 54

 Textbook of Algebra and Trigonometry for Class XIAvailable online @ http://www.megalecture.com, Version: 1.0

Question \# 1

Write the converse, inverse and contrapositive of the following conditions:
(i) $\sim p \rightarrow q$
(ii) $q \rightarrow p$
(iii) $\sim p \rightarrow \sim q$

Solution

(i)

Conditional:	$\sim p \rightarrow q$
Converse:	$q \rightarrow \sim p$
Inverse:	$p \rightarrow \sim q$
Contrapositive:	$\sim q \rightarrow p$

(ii)

Conditional:
$q \rightarrow p$
Converse:
$p \rightarrow q$
Inverse:
$\sim q \rightarrow \sim p$
Contrapositive:
$\sim p \rightarrow \sim q$
(iii) Conditional
$\sim p \rightarrow \sim q$
Converse:
Inverse:
Contrapositive:

Question \# 2

Construct truth tables for the folpwing statements:
(i) $(p \rightarrow \sim p) \vee(p \rightarrow q)$
(ii) $(p \wedge \sim p) \rightarrow q$
(iii) $\sim(p \rightarrow q) \leftrightarrow(p \wedge \sim q)$

Solution

(i)

NStatement: $(p \rightarrow \sim p) \vee(p \rightarrow q)$

p	$Q v$	$\sim p$	$p \rightarrow \sim p$	$p \rightarrow q$	$(p \rightarrow \sim p) \vee(p \rightarrow q)$
T	T	F	F	T	T
T	F	F	F	F	F
F	T	T	T	T	T
F	F	T	T	T	T

(ii)

Statement: $(p \wedge \sim p) \rightarrow q$

p	Q	$\sim p$	$p \wedge \sim p$	$(p \wedge \sim p) \rightarrow q$
T	T	F	F	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

whatsapp: +92 3235094443 , email: megalecture@gmail.com FSc I-2.4-2
(iii) Statement: $\sim(p \rightarrow q) \leftrightarrow(p \wedge \sim q)$

p	Q	$\sim q$	$p \rightarrow q$	$\sim(p \rightarrow q)$	$p \wedge \sim q$	$(p \wedge \sim q) \leftrightarrow \sim(p \rightarrow q)$
T	T	F	T	F	F	T
T	F	T	F	T	T	T
F	T	F	T	F	F	T
F	F	T	T	F	F	T

Tautology:

The statement, which is true for all possible values of the variables in it, is called tautology.

Contingency:

The statement, which is true or false depending upon the truth values of the variables involved in it, is called a contingency.

Absurdity or Contradiction:

The statement, which is false for all the possible values of the variables involved in it, is called an absurdity or contradiction.

Question \# 3

Show that each of the following statements is a tautology:
(i) $(p \wedge q) \rightarrow p$
(ii) $p \rightarrow(p \vee q)$
(iii) $\sim(p \rightarrow q) \rightarrow p$
(iv) $\sim q \wedge(p \rightarrow q) \rightarrow \sim p$

Solution

Statement: $(p \wedge q) \rightarrow p$

P	q	$p \wedge q$	$p \wedge q \rightarrow p$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.
(ii)

Statement: $p \rightarrow(p \vee q)$

p	q	$p \vee q$	$p \rightarrow(p \vee q)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology

Statement: $\sim(p \rightarrow q) \rightarrow p$

p	Q	$p \rightarrow q$	$\sim(p \rightarrow q)$	$\sim(p \rightarrow q) \rightarrow p$
T	T	T	F	T
T	F	F	T	T
F	T	T	F	T
F	F	T	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.
(iv)

Statement: $\sim q \wedge(p \rightarrow q) \rightarrow \sim p$

p	Q	$\sim p$	$\sim q$	$p \rightarrow q$	$\sim q \wedge(p \rightarrow q)$	$\sim q \wedge(p \rightarrow q) \rightarrow \sim p$
T	T	F	F	T	F	T
T	F	F	T	F	F	$\mathrm{~T}^{\prime}$
F	T	T	F	T	F	T
F	F	T	T	T	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question \# 4

Determined whether each of the following is a tautology, a contingency or an absurdity:

$$
\text { (i) } p \wedge \sim p
$$

(ii) $p \rightarrow(c-a p)$
(iii) $q \vee(\sim q \vee p)$

Solution

(i)

Stâtement: $p \wedge \sim p$

	$\sim p$	$p \wedge \sim p$
T	F	F
F	T	F

The last colun of the above table shows that the statement is false for all values of p and q thus given statement is absurdity.

Statement: $p \rightarrow(q \rightarrow p)$

p	q	$q \rightarrow p$	$p \rightarrow(q \rightarrow p)$
T	T	T	T
T	F	T	T
F	T	F	T
F	F	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.
whatsapp: +92 3235094443, email: megalecture@gmail.com FSc I-2.4-4

P	q	$\sim q$	$\sim q \vee p$	$q \vee(\sim q \vee p)$
T	T	F	T	T
T	F	T	T	T
F	T	F	F	T
F	F	T	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question \# 5

Prove that
$p \vee(\sim p \wedge \sim q) \vee(p \wedge q)=p \vee(\sim p \wedge \sim q)$
Solution Consider the truth table

P	Q	$\sim p$	$\sim q$	$p \wedge q$	$\sim p \wedge \sim q$	$p \vee(\sim p \wedge \sim q) \vee(p \wedge q)$	$p \vee(\sim p \wedge \sim q)$
T	T	F	F	T	F	T	T
T	F	F	T	F	F	T	T
F	T	T	F	F	F	F	F
F	F	T	T	F	T	T	T

The last two column of the above table are identical this shows that the statement $p \vee(\sim p \wedge \sim q) \vee(p \wedge q)$ and $p \vee(\sim p \wedge \sim q)$ are equal
i.e. $p \vee(\sim p \wedge \sim q) \vee(p \wedge q)=p \vee(\sim p \wedge \sim q)$

Book: Exercise 2.4
 Text Book of Algebra and Trigonometry Class XI
 Punjab Textbook Board, Lahore.

Available online at http://www.megalecture.com

