ELECTRONIC CONFIGURATION WS 1

- 1 Complete the electronic configurations of atoms of the following elements:
 - a) Phosphorus: [Ne]... 35^23p^3
- b) Cobalt: [Ar].. $3d^{7}4s^{2}$
- **2** Fill in the outer electrons of a phosphorus atom in the boxes below:

3 <i>s</i>		3 <i>p</i>	
11/	1	1	1

3 The successive ionisation energies of an element, X, are given in the table. To which group of the periodic table does element X belong?

Ionisation	Ionisation energy/kJ mol ⁻¹
1st	1000
2nd	2260
3rd	3390
4th	4540
5th	6990
6th	8490
7th	27 100
8th	31700
9th	36600
10th	43100

- Write down the complete electronic configurations for the following elements:

 a) Mn: $\frac{15^{2}}{162} \frac{25^{2} \lambda p^{6}}{m/z} \frac{35^{1} 3p^{6}}{35^{1} 3p^{6}} \frac{3d^{5}}{3d^{5}}$ b) Mn²⁺: $\frac{15^{2}}{15^{2}} \frac{25^{2} \lambda p^{6}}{25^{2} 3p^{6}} \frac{3d^{5}}{3d^{5}}$ c) Cu²⁺: $\frac{15^{4}}{15^{2}} \frac{25^{2} \lambda p^{6}}{35^{2} 3p^{6}} \frac{3d^{9}}{3d^{9}}$

$\underline{Online\ Classes: Megalecture @gmail.com}$

116

)	a) Explain what you understand by the word forbital as applied to electrons.
	Region within an atom that the efection
	Region within an atom that the electron is most tikely to occupy.
	b) Draw an s- and a p- orbital.
	S
	c) How does a 1s orbital differ from a 2s orbital? 26 16 9999 Hm 19
	d) How many electrons are there in:
	i. a 3d orbital?
	ii. orbitals with a principal quantum number of 3?

ELECTRONIC CONFIGURATION WS 2

1 Successive ionisation energies of an element X in kj/mol are as follows:

578 1817 2745 11578 14831 18378
--

Which one of the following is X?

A boron

C aluminium

B carbon

D silicon

Which one of the ws giving information about the fourth period of the periodic table is correct?

	Total number of orbitals	The number of different types of orbital	Maximum number of electrons in the shell
Α	4	2	8
В	9	2	18
С	9	3	8
D	9	3	18

3 What is the order of increasing energy of the orbitals within a single energy level?

A d > s < f < p

C p < s < f < d

B s < p < d < f

 $\mathbf{D} f < d < p < s$

4 What is the condensed electronic configuration for Co3+?

A [Ar]4s²3d⁵

C [Ar]3d⁶

B [Ar]4s²3d⁴

D [Ar]4s¹3d⁵

5 Which are the values of the successive ionisation energies for an element in Group 14 of the periodic table?

A 496, 738, 578, 789, 1012, 1000

C 1086, 2353, 4621, 6223, 37832, 47278

B 578, 1817, 2745, 11578, 14831, 18378

D 1314, 1000, 941, 869, 812

6	Which are the values for the first period?	st ionisatio	on energ	ies of co	nsecutiv	e eleme	nts in the	same
X	A 496, 738, 578, 789, 1012, 100	00	C 10	086, 235	53, 4621,	6223, 3	7832, 472	278
/ \	B 578, 1817, 2745, 11578, 14831,	18378	D 13	314, 1000	, 941, 86	9, 812		
7	Use of the Data Booklet is releva	nt to this q	uestion.					
$\sqrt{}$	In the gas phase, aluminium and a transition element require the same amount of energy to form one mole of an ion with a 2+ charge.							
	What is the transition element?							
/	A Co							
	B Cr							
	C Cu							
	D Ni							
								[W'02 3]
8	The successive ionisation energ	ies, in kJ n	nol ^{–1} , of a	an eleme	nt X are	given be	low.	
	870 1800 3000 3600	5800	7000	132	00			
	What is X ?							
	A ₃₃ As B ₄₀ Zr	C ₅₂ Te	D	₅₃ I				
	33 40	52		53				[S'03 4]
9	Which of the following particles v	would, on I	osing an	electron.	, have a l	nalf-filled	set of p o	rbitals?
	A C ⁻ B N	C	_		D 0 ⁺		·	
								[S'04 5]
10	The table gives the successive id	onisation e	nergies f	or an ele	ment X.			
		101	Ond	Ord	1+b	E+b	C+b	
	ionisation energy / kJ mol	1st -1 950	2nd 1800	3rd 2700	4th 4800	5th 6000	6th 12300	
	ionisation energy / kJ IIIOI	950	1000	2700	4000	0000	12300	

What could be the formula of the chloride of *X*?

A XCl

[W'03 5]

					119					
11	Wh	at is the orde	of increas	sing ener	gy of the	listed orbi	itals in the	e atom of	titanium?	
	Α	3s 3p 3d 4s								
	В	3s 3p 4s 3d								
	С	3s 4s 3p 3d								
	D	4s 3s 3p 3d								
										[S'04 4]
12	An	atom has eigh	t electrons							
	Wh	ich diagram sh	lows the el	ectronic c	onfiguratio	on of this a	atom in its	lowest en	ergy state?	•
	Α	1		11 11						
	В	1		1 1	1 [
	С	1		1 1		1				
	D	1		1 1	1 [1				
										[W'04 5]
13	The	e first six ionisa	tion energ	ies of four	elements	, A to D , a	ire given.			
	Wh	ich element is	most likely	to be in G	Group IV o	f the Perio	odic Table	?		
	er	ionisation nergy/kJ mol ⁻¹	1st	2nd	3rd	4th	5th	6th		
		Α	494	4560	6940	9540	13400	16600		

ionisation energy/kJ mol ⁻¹	1st	2nd	3rd	4th	5th	6th
Α	494	4560	6940	9540	13400	16600
В	736	1450	7740	10500	13600	18000
C	1090	2350	4610	6220	37800	47000
D	1400	2860	4590	7480	9400	53200

[S'05 3]

14 What is the electronic configuration of an element with a **second** ionisation energy higher than that of each of its neighbours in the Periodic Table?

- $1s^22s^22p^63s^2$
- $\mathbf{B} \quad 1s^2 2s^2 2p^6 3s^2 3p^1$
- $1s^22s^22p^63s^23p^2$ С
- **D** $1s^22s^22p^63s^23p^3$

[S'05 3]

						120			
15		1999, researche I the following el		•	SA b	elieved that t	hey l	had made a ne	ew element and that it
				[R	n] 5f	¹⁴ 6d ¹⁰ 7s ² 7p ⁶ .			
	In v	which group of th	ne Po	eriodic Table wo	uld '	you expect to	find	this element?	
		II	В	IV		VI		D 0	
									[S'11 2 13]
16		llium nitride, Gal gth used as a fila						ric light bulbs	because only a small
	Gal	lium nitride is ar	ion	ic compound co	ntair	ning the Ga ³⁺	ion.		
	Wh	at is the electror	n arr	angement of the	nitr	ogen ion in ga	alliun	n nitride?	
	Α	1s ² 2s ²							
	В	1s ² 2s ² 2p ³							
	С	1s ² 2s ² 2p ⁴							
(D	$1s^2 2s^2 2p^6$							
									[S'06 3]
17	Use	e of the Data Boo	oklet	is relevant to th	is qu	iestion.			
	The	e electronic struc	ture	s of calcium, kry	pton	, phosphorus	and	an element X a	are shown.
	Wh	ich electronic str	uctu	re is that of elen	nent	X ?			
	Α	1s ² 2s ² 2p ⁶ 3s ² 3p	3	P					
	В	1s ² 2s ² 2p ⁶ 3s ² 3p	⁶ 4s ²	ca					
	C	1s ² 2s ² 2p ⁶ 3s ² 3p	⁶ 3d ⁶	4s ²					
	D	$1s^22s^22p^63s^23p$	⁶ 3d ¹	⁰ 4s ² 4p ⁶					
									[W'06 3]
18	Use	e of the Data Bo	oklei	t is relevant to th	is qu	uestion.			
	In forming ionic compounds, elements generally form an ion with the electronic structure of a noble gas.								
	Wh	ich ion does not	t hav	e a noble gas e	lectro	onic structure	?		
	Α	I ⁻	В	Rb⁺	С	Sn ²⁺		D Sr ²⁺	
									[W'07 2]

In which pair do both atoms have one electron only in an s orbital in their ground states?

B Cu, Be

C H, He

D Li, Cr

A Ca, Sc

19

[W'08 3]

The first seven ionisation energies of an element between lithium and neon in the Periodic Table are as follows.

1310 3390 5320 7450 11 000 13 300 71 000 kJ mol⁻¹

What is the outer electronic configuration of the element?

- $A 2s^2$
- **B** $2s^22p^1$
- **C** 2
- **D** $2s^22p^6$

[S'0913]

Which element has an equal number of electron pairs and of unpaired electrons within orbitals of principal quantum number 2?

- A beryllium
- **B** carbon
- C nitrogen
- D oxygen

[W'11 1 3]

22 Use of the Data Booklet is relevant to this question.

Which graph represents the number of unpaired p orbital electrons for atoms with proton numbers 13 to 18?

[S'09 14]

- 23 In which set do all species contain the same number of electrons?
 - **A** Co²⁺, Co³⁺, Co⁴⁺
 - **B** F⁻, Br⁻, C*l*⁻
 - **C** Na⁺, Mg²⁺, A*l*³⁺
 - **D** K₂SO₄, K₂SeO₄, K₂TeO₄

[W'13 2 4]

24 Element X forms X^- ions that can be oxidised to element X by acidified potassium manganate(VII).

What could be the values of the first four ionisation energies of X?

	1st	2nd	3rd	4th
Α	418	3070	4600	5860
В	577	1820	2740	11 600
С	590	1150	4940	6480
D	1010	1840	2040	4030

[W'13 3 4]

25 Atoms of element X have six unpaired electrons.

What could be element X?

- A carbon
- **B** chromium
- **C** iron
- **D** selenium

[S'14 1 1]

- 26 For the element sulfur, which pair of ionisation energies has the largest difference between them?
 - A third and fourth ionisation energies
 - **B** fourth and fifth ionisation energies
 - **C** fifth and sixth ionisation energies
 - D sixth and seventh ionisation energies

[M'16 2 2]

27 Elements X and Y are in the same group of the Periodic Table.

The table shows the first six ionisation energies of X and Y in kJ mol⁻¹.

	1st	2nd	3rd	4th	5th	6th
Х	800	1600	2400	4300	5400	10400
Υ	1000	1800	2700	4800	6000	12300

What could be the identities of X and Y?

	Х	Υ		
A	antimony, Sb	arsenic, As		
В	arsenic, As	antimony, Sb		
С	selenium, Se	tellurium, Te		
D	tellurium, Te	selenium, Se		

[S'16 2 3]

- 28 Which isolated gaseous atom has a total of five electrons occupying spherically shaped orbitals?
 - A boron
 - **B** fluorine
 - **C** sodium
 - **D** potassium

[S'16 2 5]

30 Sodium azide, NaN₃ is an explosive used to inflate airbags in cars when they crash. It consists of positive sodium ions and negative azide ions.

What are the numbers of electrons in the sodium ion and the azide ion?

	sodium ion	azide ion
Α	10	20
В	10	22
С	12	20
D	12	22

- 31 What is the electronic configuration of an isolated Ni²⁺ ion?
 - **A** $1s^22s^22p^63s^23p^63d^64s^2$
 - **B** $1s^22s^22p^63s^23p^63d^84s^2$
 - $\textbf{C} \quad 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$
 - D 1s²2s²2p⁶3s²3p⁶3d⁸
- 32 Which ion has the same electronic configuration as Cl^{-} ?
 - **A** F
- **B** P⁺
- **C** Sc³⁺
- **D** Si⁴⁺

124

33 This question refers to isolated gaseous atoms.

In which atom are all electrons paired?

A

Ва

B Br

C S

D Si

[S'18 1 Q1]

Element X has a higher first ionisation energy than element Y.

Two students state what they believe is one factor that helps to explain this.

student 1 "X has a higher first ionisation energy than Y because an atom of X has more protons in its nucleus than an atom of Y."

student 2 "X has a higher first ionisation energy than Y because X has a smaller atomic radius than Y."

Only **one** of the two students is correct.

What could X and Y be?

	Х	Y
Α	carbon	boron
В	magnesium	aluminium
С	oxygen	nitrogen
D	oxygen	sulfur

[S'18 1 Q10]

The electronic configuration of an atom of sulfur is $1s^22s^22p^63s^23p^4$.

How many valence shell and unpaired electrons are present in one sulfur atom?

	valence shell electrons	unpaired electrons
_		4
Α	2	1
В	4	2
С	6	0
D	6	2

[S'18 2 Q2]

The table refers to the electron distribution in the second shell of an atom with eight protons.

Which row is correct for this atom?

	orbital shap	е	orbital shape		
	orbital type	number of electrons	orbital type	number of electrons	
Α	p 2		s	4	
В	р	4	S	2	
С	s	2	р	4	
D	S	4	р	2	

[S'18 3 Q3]

126

SECTION B

For each of the questions in this section, one or more of the three numbered statements 1 to 3 may be correct.

Decide whether each of the statements is or is not correct (you may find it helpful to put a tick against the statements that you consider to be correct).

The responses **A** to **D** should be selected on the basis of

Α	В	С	D
1, 2 and 3	1 and 2	2 and 3 only are correct	1 only
are	only are		is
correct	correct		correct

No other combination of statements is used as a correct response.

1 In which pairs do both species have the same number of unpaired p electrons?

1 O and Cl^+

- **2** F⁺ and Ga⁻
- 3 P and Ne⁺

(h)

[S'12 3 32]

2 Use of the Data Booklet is relevant to this question.

The isotope ⁹⁹Tc is radioactive and has been found in lobsters and seaweed adjacent to nuclear fuel reprocessing plants.

Which statements are correct about an atom of 99Tc?

- 1 It has 13 more neutrons than protons.
- 2 It has 43 protons.
- 3 It has 99 nucleons.

[S'07 31]

- 3 Which statements are correct when referring to the atoms ²³Na and ²⁴Mg?
 - 1 They have the same number of full electron orbitals.
 - 2 They have the same number of neutrons.
 - **3** They are both reducing agents.

[S'13 3 32]

127

4 Carbon and nitrogen are adjacent in the Periodic Table.

Which properties do they both have?

- 1 There is an empty 2p orbital in one atom of the element.
- 2 The principal quantum number of the highest occupied orbital is 2.
- 3 They form compounds in which their atoms form bonds with four other atoms.

[S'13 1 32]

ELECTRONIC CONFIGURATION WS 3

- 1 Electrons are arranged in energy levels.
 - (a) An orbital is a region in which an electron may be found.

Draw diagrams to show the shape of an s orbital and of a p orbital.

[2]

(b) Complete the table below to show how many electrons completely fill each of the following.

	number of electrons
a d orbital	ک
a p sub-shell	6
the third shell (n = 3)	18

[3]

(c) The energy diagram below is for the eight electrons in an oxygen atom. The diagram is incomplete as it only shows the two electrons in the 1s level.

Complete the diagram for the oxygen atom by:

(i) adding labels for the other sub-shell levels,

[1]

(ii) adding arrows to show how the other electrons are arranged.

[1]

129

(d) Successive ionisation energies provide evidence for the arrangement of electrons in atoms. **Table 1.1** shows the eight successive ionisation energies of oxygen.

Table 1.1

ionisation number	1st	2nd	3rd	4th	5th	6th	7th	8th
ionisation energy/kJ mol ⁻¹	1314	3388	5301	7469	10989	13327	71 337	84 080

(i)	Define the term <i>first</i> ionisation energy.
	Energy required to remove 1 mole of
	electrons from 1 more of gaseous atoms
	Energy required to remove 1 mole of electrons from 1 mole of gaseous atoms understand conditions.
	[3]
(ii)	Write an equation, with state symbols, to represent the third ionisation energy of oxygen. $0^{2+} \longrightarrow 0^{3+} + e$ [2]
(iii)	Explain how the information in Table 1.1 provides evidence for two electron shells in oxygen.
	Big difference in the 6th & 7th ionisation energies indicating that the 7th electron
	is from a shell closer to the nucleau
	hence at least 2 shells.

3 In the 19th and 20th centuries, scientists established the atomic theory and showed that three sub-atomic particles, electron, neutron and proton, exist. The masses and charges of these three particles were subsequently determined.

When separate beams of electrons, neutrons or protons are passed through an electric field in the apparatus below, they behave differently.

- (a) (i) Which of these three particles will be deflected the most by the electric field?
 - (ii) In which direction will this particle be deflected?

 Towards the positive plate.
 - (iii) Explain your answer.

It is the lightest of the three particles and is negatively changed.

(b) (i) Define the term *proton number*.

Number of profess in the nucleas of an atom

(ii) Why is the proton number of an atom of an element usually different from the nucleon number of an atom of the element?

nucleon number in the sum of the no. of protons

Eq neutrons in the nucleas of an atom. And atoms
at least one neutron. [2]

131

(c)	Protons and neutrons have been used in nuclear reactions which result in the formation of artificial elements. In such processes, protons or neutrons are accelerated to high speeds and then fired like 'bullets' at the nucleus of an atom of an element.
	Suggest why neutrons are more effective than protons as 'nuclear bullets'.
	protons bring positive will be repelled by the nucleus.
	nucleus. [2]
(d)	In some cases, when neutrons are fired at atoms of an element, the neutrons become part of the nucleus of those atoms.
	What effect does the presence of an extra neutron have on the chemical properties of the new atoms formed? Explain your answer.
	No effect as chemical properties are based
	on electron announgement.
	<i>()</i> [2]
	[Total: 10]
	[Total: To]

⁴ The first six successive ionisation energies of an element **D** are shown in Table 4.1 below.

Table 4.1

element	ionisation energy/kJ mol ⁻¹		J mol ⁻¹			
element	1st	2nd	3rd	4th	5th	6th
D	1086	2353	4621	6223	37832	47278

(a)	Define the term <i>first</i> ionisation energy.
	Energy required to remove 1 mole of electrons
	Energy required to remove 1 mole of electrons from 1 mol of gaseou atoms under
	standard conditions.
	[3
(b)	Write an equation, with state symbols, to represent the third ionisation energy of element D . $D^{2+}(g) \longrightarrow D^{3+}(g) + \ell$.
(c)	Explain your answer.
	explanation longe difference between the 4th & 5th ionisation energy indicating that the 5th electron is from shell closer to the nucleus 4e in the
	ionisation energy indicating that the 5th electron
	is from shell closer to the nucleus 4e in the
	outermost chill.

5			plain what is meant by the term ionisation energy. Envigy required to remove I mole of electrom from
			nvigy required to remove I mole of electrons from 1 mol of gaseous atoms under standard conditions.
			<i>U</i> [3]
	(b)	The	e first seven ionisation energies of an element, A , in kJ mol ⁻¹ , are
			1012 1903 2912 4957 6274 21269 25398.
		(i)	State the group of the Periodic Table to which A is most likely to belong. Explain your answer.
			Element A is in Group 5 as there is a big jump between
			Element A is in Group 5 as there is a big jump between the 5th and 6th ionisation energies indicating that the
			6th e is from a shell closer to the nucleus

(ii) Complete the electronic configuration of the element in Period 2 that is in the same group as A.

[5e in the outermost shell]

$$1s^2 = \frac{\lambda s^2}{2} \frac{2\rho^3}{\rho^3}$$
 [1]

(c) Another element, Z, in the same period of the Periodic Table as A, reacts with chlorine to form a compound with empirical formula $\mathbf{ZC}l_2$. The percentage composition by mass of $\mathbf{ZC}l_2$ is **Z**, 31.13; C*l*, 68.87.

Define the term relative atomic mass

(ii) Calculate the relative atomic mass,
$$A_r$$
, of \mathbf{Z} .

Give your answer to **three** significant figures.

$$\underline{ZCI_2}: \underbrace{X}_{X+7I} \times 100 = 31.13$$

$$\underline{Z}_{I} \times 100 = 68.87$$

$$\underline{ZI_2} \times 100 = 68.87$$

$$A_{\rm r}$$
 of **Z** =32.1 [2]

 $\frac{36.5 \times 2}{\chi + (35.5 \times 2)} \times 100 = 68.87$

$$\chi = 32.1$$