POLYATOMIC IONS

www.megalecture.com

- Carbonate (CO₃⁻²), Bicarbonate (HCO₃⁻¹)
- Phosphate (PO_4^{-3}), Phosphite (PO_3^{-3})
- Sulphate (SO_4^{-2}) , Sulphite (SO_3^{-2})
- Nitrate (NO₃⁻¹), Nitrite (NO₂⁻¹)
- Ammonium (NH₄⁺¹), Mangnate(VII) MnO₄⁻¹)
- Hydroxide (OH⁻¹), Dichromate(VI) (Cr₂O₇⁻²)
- Hydrogensulfate (HSO₄⁻¹),

ACIDS (They produce H⁺¹ ions when dissolved in water)

- Hydrochloric Acid (HCl)
- Nitric Acid (HNO₃), Nitrous Acid (HNO₂)
- Sulphuric Acid (H₂SO₄), Sulphurous Acid (H₂SO₃)
- Phosphoric Acid (H₃PO₄), Phosphorous Acid (H₃PO₃)
- Carbonic Acid (H₂CO₃)

BASES/ALKALIS

NH₃/NH₄OH, Metal Oxides and Metal Hydroxides are all Bases. Bases that dissolve in water are alkalis – All Gp1/NH₄⁺ Hydroxides are soluble and those lower down in GpII (Ba(OH)₂, Sr(OH)₂ & partially Ca(OH)₂)

SOLUBILITY OF SALTS

- All nitrate/Gp1 and NH₄⁺ compounds are soluble
- All sulphate salts are soluble except PbSO₄, BaSO₄ & partially CaSO₄
- All carbonate and phosphate salts are insoluble except Group 1 and NH4⁺¹ salts
- Group 1 and NH₄⁺¹ salts are all soluble
- All chlorides/bromides/iodides are soluble except Ag⁺¹, Pb⁺² salts.
 - AgCl, PbCl₂ are white ppt soluble in dilute NH₃(aq)
 - AgBr, PbBr₂ are cream ppt soluble in concentrated NH₃(aq)
 - \circ AgI, PbI₂ are yellow ppt insoluble in NH₃(aq)

REACTIONS OF ACIDS/BASES

- Acid + Base -> Salt + water
- Acid + Metal carbonate -> Salt + Water + CO₂
- Acid + Metal -> Salt + H₂
- Acid + NH₃ -> Ammonium Salt
- Ammonium Salt + Base/Alkali -> Salt + Ammonia
 + Water
- Metal Carbonate \rightarrow Metal Oxide + CO₂
- Metal Nitrate → Metal Oxide + NO₂ + O₂ (For Metals other than Group1)
- Metal Nitrate → Metal Nitrite + O₂ (For Group1 Metals)

PREPARATION OF SALTS

TITRATION:

Soluble Reactants \rightarrow soluble Products **PRECIPITATION** Soluble Reactants \rightarrow Insoluble Products

EXCESS METHOD

Insoluble Reactants \rightarrow Soluble or Insoluble Product INDICATOR COLORS

Methyl Orange

- Red in Acid (below pH 4)
- Orange/Yellow in Alkali (above pH 4)

Phenolpthalein

- Pink in Alkali (Above pH 8)
- Colorless in Acid (Below pH 8)

Universal Indicator

- Strong Acid (Red), Weak Acid (Orange)
- Weak Alkali (Blue), Strong Alkali (Purple)
- Neutral (Green)

REACTIVITY SERIES/EASE OF DISCHARGE

(most reactive) K, Na, Ca, Mg, Al, (C), Zn, Fe, Sn, Pb, (H) Cu, Ag, Au, Pt (least reactive)

EASE OF DISCHARGE OF ANIONS

 I^{-1} , Br^{-1} , OH^{-1} , $\underline{CI^{-1}}$, SO_4^{-2} , NO_3^{-1} etc (underlined ions get discharged when present in concentrated amount)

EXTRACTION OF IRON

Iron Ore (Haematite) – Fe_2O_3 is reduced with Coke (Carbon) in blast furnace.

- Fe₂O₃ + C -> Fe + CO₂
- $Fe_2O_3 + CO -> Fe + CO_2$

Calcium Carbonate is added to the blast furnace to get rid of sand SiO_2

- CaCO₃ -> CaO + CO₂ (decomposes due to heat)
- CaO + SiO₂ -> CaSiO₃ (which forms slag)
- Heat is produced in blast furnace when Coke (Carbon) combusts in hot air.

EXTRACTION OF ALUMINIUM

Bauxite is Al_2O_3 . Al_2O_3 is amphoteric and is dissolved in NaOH. Other metal oxides which are basic don't dissolve and are filtered out.

Cryolite Na₃AlF₆ is added to reduce melting point.

Graphite anode burns away (C+O₂->CO₂)

Cathode: $4AI^{+3} + 12e -> 4AI$ Anode: $6O^{-2} -> 3O_2 + 12e$

CONTACT PROCESS

 $S + O_2 \rightarrow SO_2$ $2SO_2 + O_2 \leftrightarrow 2SO_3$

Youtube.com/megalecture

www.megalecture.com

Conditions for the reversible reaction above: V_2O_5

catalyst, 450⁰ C, 1-2 atm pressure SO₃ + H₂SO₄ \rightarrow H₂S₂O₇ (oleum)

Oleum diluted in water to get H_2SO_4

 $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$

HABER PROCESS

N₂ + 3H₂ <-> 2NH₃

Conditions: 200 atm, 450⁰C, Iron Catalyst

DI-ATOMIC MOLECULES: H₂, N₂, O₂, & Group VII (F₂, Cl₂, Br₂, l₂)

ACIDIC/BASIC/NEUTRAL GASES

Acidic: CO₂, P₂O₅, NO₂, SO₂, SO₃ Neutral: H₂, O₂, N₂, CO, NO Basic: NH₃

Amphoteric: ZnO, Al₂O₃, PbO

OXIDATION STATES (OS)

• Free element is "0" e.g. Na, O_2 , I_2 etc Elements present in compounds

- Group 1 is +1, Group 2 is +2, Group 3 is +3,
- Transition Metals have Variable OS.
- Oxygen is -2
- Hydrogen is +1
- Group 7 is -1 except when bonded to Oxygen

OXIDIZING/REDUCING AGENTS

Strong Oxidizing Agents:

- Potassium di Chromate K₂Cr₂O₇ (orange). Turns green when reduced.
- Potassium Mangnate KMnO₄ (purple). Turns colorless when reduced.

Strong Reducing Agents:

- SO₂ is a strong reducing agent, Gets oxidized to SO₃
 (SO₂ is a bleaching Agent, and a Food Preservative)
- I⁻¹ iodide is a strong reducing agents. Gets oxidized to I₂ iodine.

ORGANIC CHEMISTRY

- Free Radical Substitution of Alkanes (UV light required) CH₄ + Cl₂ → CH₃Cl + HCl
- Cracking of Alkanes (400°C, Al₂O₃)
- Bromination of Alkenes (alkenes decolourize bromine) CH₂=CH₂ + Br₂ → CH₂BrCH₂Br
- Hydration of Alkenes (H₃PO₄ catalyst, 300⁰C, 60 atm pressure): Alcohol is formed
- Hydrogenation of Alkenes (Nickel catalyst, 200^oC) (Vegetable Oil to Margarine)
- Alcohols get oxidized to Carboxylic Acids
 - Reagents: Reflux + Oxidizing Agent (K₂Cr₂O₇ Orange to Green, or KMnO₄ Purple to Colorless)
- Alcohol + Carboxylic Acid \rightarrow Ester + H₂O
 - $\circ \quad \mbox{Reflux and Few drops of concentrated H_2O_4$}$
 - Esters are Sweet smelling compounds
- Addition Polymer (Monomers(Alkene) at high T^oC and Pressure) e.g. Polyethene, Plastics

Youtube.com/megalecture

Condensation Polymer

- **Polyamide (Nylon):** (di)Carboxylic Acid + (di)Ammine → Polyamide(e.g. Nylon) + H_2O
- Polyamide (Proteins): Amino Acid + Amino Acid \rightarrow Polyamide + H₂O
- Polyester: (di)Carboxylic Acid + (di)Alcohol →
 Polyester (e.g. Fats, Terylene) + H₂O
- Glucose + Glucose \rightarrow Starch + H₂O

COLOR OF COMPOUNDS

CuO (black), PbO (yellow), Group1, 2 and 3 are generally white. Anhydrous $CuSO_4$ is white. Hydrous $CuSO_4.xH_2O$ is blue. $CuSO_4(aq)$ is blue solution. Fe_2O_3 is red. Cl_2 is greenish gas, Br_2 is red brown liquid, l_2 is blue black solid. AgCl/PbCl₂ is white, AgBr/PbBr₂ is cream, Agl/Pbl₂ is yellow. Hydrous CoCl₂ is pink, Anhydrous CoCl₂ is blue.

SOME NAMES OF COMPOUNDS

Lime – Ca(OH)₂, Limestone – CaCO₃

TEST OF CATIONS

- NH4⁺¹: Ammonia gas released with NaOH (aq)
- Fe⁺²: insoluble green ppt with both excess NaOH (aq) and NH₃(aq)
- Fe⁺³: insoluble red/brown ppt with both excess NaOH (aq) and NH₃(aq)
- Ca^{+2} : white ppt with NaOH (aq) insoluble in excess. No or slight ppt with NH₃ (aq)
- Cu⁺²: Pale blue ppt with NaOH (aq) insoluble in excess. Pale blue ppt with NH₃ (aq) soluble in excess, giving a deep blue solution
- Al⁺³: White ppt with both NaOH (aq) and NH₃ (aq) but only soluble in excess NaOH (aq)
- Zn⁺²: White ppt, soluble in excess with both NaOH (aq) and NH₃(aq).

TEST FOR ANIONS

- CO₃⁻²: CO₂ gas produced (effervescence) with aqueous Acid
- **Cl⁻¹:** Acidify with dilute aqueous nitric acid and add with Ag⁺¹ or Pb⁺². White ppt produced.
- I⁻¹: Acidify with dilute aqueous nitric acid and add with Ag⁺¹ or Pb⁺². Yellow ppt produced.
- NO₃⁻¹: Add Aluminium foil/powder + NaOH and heat. Ammonia gas is given off
- **SO**₄⁻²: Acidify with nitric acid and add Ba⁺². White ppt produced

TEST FOR GASES

- **CO₂:** Turns lime water (Ca(OH)₂) milky
- NH₃: Turns damp red litmus paper blue
- H₂: Pop sound produced when ignited
- **O₂:** Relights a glowing splint
- Cl₂: Bleaches damp litmus paper
- **SO₂:** Turns acidified potassium dichromate (VI) from orange to green

Fahad H. Ahmad