5070/0620 CIE CHEMISTRY 0' LEVELS - GCE \& iGCSE Acids, Bases \& Salts www.fahadsacademy.com

MCQs: Acids, Bases \& Salts (iGCSE)

32 Which pair of compounds would make a $\mathrm{N}, \mathrm{P}, \mathrm{K}$ fertiliser?
A ammonium sulfate and potassium phosphate
B calcium hydroxide and ammonium nitrate
C calcium phosphate and potassium chloride
D potassium nitrate and ammonium sulfate.
0620_w/14/qp13

21 Which salt preparation uses a burette and a pipette?
A calcium nitrate from calcium carbonate and nitric acid
B copper(II) sulfate from copper(II) hydroxide and sulfuric acid
C potassium chloride from potassium hydroxide and hydrochloric acid
D zinc chloride from zinc and hydrochloric acid
0620_w/14/qp13

20 Which statement about oxides is correct?
A A solution of magnesium oxide will have a pH less than 7.
B A solution of sulfur dioxide will have a pH greater than 7.
C Magnesium oxide will react with nitric acid to make a salt.
D Sulfur dioxide will react with hydrochloric acid to make a salt.
0620_w/14/qp13

19 A colourless solution is tested by the following reactions.
Which reaction is not characteristic of an acid?
A A piece of magnesium ribbon is added. Bubbles are seen and the magnesium disappears.
B A pungent smelling gas is produced when ammonium carbonate is added.
C Copper oxide powder is added and the mixed is warmed. The solution turns blue.
D The solution turns blue litmus red.
0620_w/14/qp13

32 Which method can be used to obtain ammonia from ammonium sulfate?
A Heat it with an acid.
B Heat it with an alkali.
C Heat it with an oxidising agent.
D Heat it with a reducing agent.

0620_w/14/qp11

22 The graph shows how the pH of soil in a field changes over time.
At which point was the soil neutral?

0620_w/14/qp11

21 How many different salts could be made from a supply of dilute sulfuric acid, dilute hydrochloric acid, copper, magnesium oxide and zinc carbonate?
A 3
B 4
C 5
D 6

20 The positions of elements $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z in the Periodic Table are shown.

Which elements form basic oxides?
A W, X and Y
B W and X only
C Y only
D Z only 0620_w/14/qp11

19 Which substance is the most acidic?

	substance	pH
A	calcium hydroxide	12
B	lemon juice	4
C	milk	6
D	washing up liquid	8

0620_w/14/qp11

31 A sample of fertiliser is tested by warming it with aqueous sodium hydroxide.
A colourless gas is produced which turns red litmus paper blue.
Which element, essential for plant growth, must be present?
A nitrogen
B phosphorus
C potassium
D sulfur
0620_w/13/qp13

30 Carbon dioxide is produced when
X reacts with ethanol.
Y reacts with sodium carbonate.
What are X and Y ?

	X	Y
A	H_{2}	HCl
B	H_{2}	NaOH
C	O_{2}	HCl
D	O_{2}	NaOH

0620_w/13/qp13

20 The cations shown are identified by the colour of the precipitates formed when an excess of an aqueous solution of X is added.

cations present	effect of adding an excess of aqueous X
iron(II) $\left(\mathrm{Fe}^{2+}\right)$	green precipitate
$\operatorname{copper}(\mathrm{II})\left(\mathrm{Cu}^{2+}\right)$	light blue precipitate
$\operatorname{iron}(\mathrm{III})\left(\mathrm{Fe}^{3+}\right)$	red-brown precipitate

What is X ?
A ammonia
B limewater
C silver nitrate
D sodium hydroxide
0620_w/13/qp13

18 Which are properties of an acid?
1 reacts with ammonium sulfate to form ammonia
2 turns red litmus blue

	1	2
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

35 The diagram shows a kiln used to heat limestone.

What is the product and what waste gas is formed?

	product	waste gas
A	lime, CaO	carbon monoxide
B	lime, CaO	carbon dioxide
C	slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$	carbon monoxide
D	slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$	carbon dioxide

0620_w/13/qp11

31 Farmers add calcium oxide (lime) and ammonium salts to their fields.
The compounds are not added at the same time because they react with each other.
Which gas is produced in this reaction?
A ammonia
B carbon dioxide
C hydrogen
D nitrogen
0620_w/13/qp11

20 Compound X is tested and the results are shown in the table.

test	result
aqueous sodium hydroxide is added, then heated gently dilute hydrochloric acid is added	gas given off which turns damp red litmus paper blue effervescence, gas given off which turns limewater milky

Which ions are present in compound X ?
A ammonium ions and carbonate ions
B ammonium ions and chloride ions
C calcium ions and carbonate ions
D calcium ions and chloride ions
0620_w/13/qp11

19 Which of the following are properties of the oxides of non-metals?

	property 1	property 2
A	acidic	covalent
B	acidic	ionic
C	basic	covalent
D	basic	ionic

0620_w/13/qp11

18 Which are properties of an acid?
1 reacts with ammonium sulfate to form ammonia
2 turns red litmus blue

	1	2
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

0620_w/13/qp11

34 Two industrial processes that involve heating are

- extracting iron from its ore using a blast furnace,
- making lime.

In which of these processes is calcium carbonate used?

	extracting iron	making lime
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

0620_w/12/qp13

33 Which process does not produce carbon dioxide?
A combustion of petrol
B reaction between an acid and a metal hydroxide
C reaction between an acid and a carbonate
D respiration
0620_w/12/qp13

32 What are X and Y in the reaction shown?
ammonium chloride + solution $X \rightarrow$ alkaline gas Y

	X	Y
A	hydrochloric acid	ammonia
B	hydrochloric acid	chlorine
C	sodium hydroxide	ammonia
D	sodium hydroxide	chlorine

0620_w/12/qp13

17 Some reactions involving sodium are shown.
Which reaction does not involve the formation of a base?

0620_w/12/qp13

16 Salts X and Y are separately dissolved in water.
Samples of the solutions obtained are separately tested with dilute hydrochloric acid and with aqueous sodium hydroxide.

In two of the tests, a gaseous product is formed. No precipitate is formed in any of the tests.
What are salts X and Y ?

	X	Y
A	AgNO_{3}	BaSO_{4}
B	BaSO_{4}	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
C	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{NH}_{4} \mathrm{Cl}$
D	$\mathrm{NH}_{4} \mathrm{Cl}$	AgNO_{3}

0620_w/12/qp13

34 A student is asked to draw a diagram showing the uses of limestone.

Which numbered lines show a correct use of limestone?
A 1 and 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3
0620_w/12/qp11

33 Carbon dioxide is produced when dilute hydrochloric acid reacts with
A calcium sulfate.
B carbon.
C copper(II) carbonate.
D limewater.
0620_w/12/qp11

32 The diagram shows two substances, X and Y, being heated together.

The Universal Indicator paper turns blue during the experiment.
What are substances X and Y ?
A ammonium nitrate and hydrochloric acid
B ammonium nitrate and sodium hydroxide
C sodium carbonate and hydrochloric acid
D sodium carbonate and sodium hydroxide
0620_w/12/qp11

27 Pieces of copper, iron, magnesium and zinc are added to separate test-tubes containing dilute hydrochloric acid.

Which test-tube contains iron and dilute hydrochloric acid?
A
B
C
D

0620_w/12/qp11

18 Barium hydroxide is an alkali. It reacts with hydrochloric acid.
How does the pH of the hydrochloric acid change as an excess of aqueous barium hydroxide is added?

A The pH decreases from 14 and becomes constant at 7.
B The pH decreases from 14 to about 1.
C The pH increases from 1 and becomes constant at 7.
D The pH increases from 1 to about 14 .
0620_w/12/qp11

19 A compound is a salt if it
A can neutralise an acid.
B contains more than one element.
C dissolves in water.
D is formed when an acid reacts with a base.
0620_w/12/qp11

17 Element X forms an acidic, covalent oxide.
Which row shows how many electrons there could be in the outer shell of an atom of X ?

	1	2	6	7
A	\checkmark	\checkmark	x	x
B	\checkmark	x	\checkmark	x
C	x	x	\checkmark	\checkmark
D	x	\checkmark	x	\checkmark

0620_w/12/qp11

16 Which of these pairs of aqueous ions both react with dilute sulfuric acid to give a visible result?
A Ba^{2+} and Cl^{-}
B Ba^{2+} and $\mathrm{CO}_{3}{ }^{2-}$
C NH_{4}^{+}and $\mathrm{Cl}{ }^{-}$
D $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{CO}_{3}{ }^{2-}$
0620_w/12/qp11

13 Separate samples of anhydrous and hydrated copper(II) sulfate are heated.

Which shows the correct colour changes?

	anhydrous copper(II) sulfate	hydrated copper(II) sulfate
A	blue to white	white to blue
B	no change	blue to white
C	white to blue	blue to white
D	white to blue	no change

0620_w/12/qp11

34 Which combination of chemical compounds could be used to produce the fertiliser shown?

A $\mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
B $\mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$
C $\mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{~K}_{2} \mathrm{SO}_{4},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
D $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}, \mathrm{KCl}$

20 The results of three tests on a solution of compound \mathbf{X} are shown.

test	result
aqueous sodium hydroxide added	white precipitate formed, soluble in excess
aqueous ammonia added	white precipitate formed, soluble in excess
dilute hydrochloric acid added	bubbles of gas

What is compound \mathbf{X} ?
A aluminium carbonate
B aluminium chloride
C zinc carbonate
D zinc chloride
0620_w/11/qp11

17 Which type of reaction always forms a salt and water?
A exothermic
B neutralisation
C oxidation
D polymerisation
0620_w/11/qp11
18 Which property is not characteristic of a base?
A It reacts with a carbonate to form carbon dioxide.
B It reacts with an acid to form a salt.
C It reacts with an ammonium salt to form ammonia.
D It turns universal indicator paper blue.
0620_w/11/qp11

19 An alloy contains copper and zinc.
Some of the zinc has become oxidised to zinc oxide.
What is the result of adding an excess of dilute sulfuric acid to the alloy?
A A blue solution and a white solid remains.
B A colourless solution and a pink/brown solid remains.
C The alloy dissolves completely to give a blue solution.
D The alloy dissolves completely to give a colourless solution.

35 A bag of fertiliser 'Watch it grow' contains ammonium sulfate and potassium sulfate. Which of the three elements N, P and K does "Watch it grow' contain?

	N	P	K
A	\checkmark	\checkmark	x
B	\checkmark	x	\checkmark
C	x	\checkmark	x
D	x	x	\checkmark

0620_w/10/qp11

22 A salt is made by adding an excess of an insoluble metal oxide to an acid.
How can the excess metal oxide be removed?
A chromatography
B crystallisation
C distillation
D filtration
0620_w/10/qp11

20 Which reaction will result in a decrease in pH ?
A adding calcium hydroxide to acid soil
B adding citric acid to sodium hydrogen carbonate solution
C adding sodium chloride to silver nitrate solution
D adding sodium hydroxide to hydrochloric acid
0620_w/10/qp11

21 The oxide of element X was added to an acid. It reacted to form a salt and water.

What is the pH of the acid before the reaction and what type of element is X ?

	pH	type of element X
A	greater than 7	metal
B	greater than 7	non-metal
C	less than 7	metal
D	less than 7	non-metal

0620_w/10/qp11

19 Some barium iodide is dissolved in water.
Aqueous lead(II) nitrate is added to the solution until no more precipitate forms.
This precipitate, X , is filtered off.
Dilute sulfuric acid is added to the filtrate and another precipitate, Y , forms.
What are the colours of precipitates X and Y ?

	X	Y
A	white	white
B	white	yellow
C	yellow	white
D	yellow	yellow

0620_w/10/qp11

36 Fertilisers are used to provide three of the elements needed for plant growth.
Which two compounds would give a fertiliser containing all three of these elements?
A $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
B $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
C KNO_{3} and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
D KNO_{3} and $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ 0620_w/09/qp11

20 An aqueous solution Y contains both barium ions and silver ions.
In separate experiments, dilute sulfuric acid and dilute hydrochloric acid are added to solution Y.
Which of these acids causes a precipitate to form in solution Y?

	dilute sulfuric acid	dilute hydrochloric acid
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

0620_w/09/qp11

21 The diagram shows the pH values of four solutions.

Which of these solutions are alkaline?
A Ponly
B P and Q only
C Q, R and S only
D R and S only
0620_w/09/qp11

16 When an acid is added to an alkali the temperature rises.
Which words describe this reaction?
A decomposition and endothermic
B decomposition and exothermic
C neutralisation and endothermic
D neutralisation and exothermic
0620_w/09/qp11

2 A student carries out an experiment to prepare pure magnesium sulfate crystals.
The diagram shows the first stage of the preparation.

He adds magnesium carbonate until no more reacts.
Which process should he use for the next stage?
A crystallisation
B evaporation
C filtration
D neutralisation
0620_w/09/qp11

37 When added in turn to four solutions, aqueous sodium carbonate gives the following results.
Which solution is acidic?

solution	result
A	a blue precipitate forms
B	a white precipitate forms
C	bubbles of gas form
D	no visible reaction occurs

20 Dilute hydrochloric acid is added to aqueous barium nitrate in a test-tube.
What happens?

	the pH of the liquid in the test-tube	a precipitate forms
A	decreases	yes
B	decreases	no
C	increases	yes
D	increases	no

0620_w/08/qp1

21 A colourless liquid in an unlabelled bottle is tested as shown.

- Litmus paper turns red.
- Magnesium ribbon fizzed.
- Reaction with aqueous barium nitrate produced a white precipitate.

What is the colourless liquid?
A aqueous sodium hydroxide
B aqueous sodium sulphate
C dilute hydrochloric acid
D dilute sulphuric acid

22 The diagrams show two experiments.
experiment 1

experiment 2

What happens to the pieces of litmus paper?

	experiment 1	experiment 2
A	blue \rightarrow red	both pieces bleached
B	blue \rightarrow red	no change
C	red \rightarrow blue	both pieces bleached
D	red \rightarrow blue	no change

0620_w/08/qp1

23 Which substances react with dilute sulphuric acid to form a salt?

	magnesium	magnesium oxide	magnesium carbonate	magnesium chloride
A	\checkmark	\checkmark	\checkmark	x
B	\checkmark	\checkmark	x	\checkmark
C	\checkmark	x	\checkmark	\checkmark
D	x	\checkmark	\checkmark	\checkmark

0620_w/08/qp1

3 An aqueous solution contains barium iodide.
It is possible to obtain a solution that contains $\mathrm{Ba}^{2+}(\mathrm{aq})$ but no $\mathrm{I}^{-}(\mathrm{aq})$ by adding \qquad until no more \qquad .2...... precipitate forms.

Which words correctly complete gaps 1 and 2?

	1	2
A	aqueous lead(II) nitrate	white
B	aqueous lead(II) nitrate	yellow
C	dilute sulphuric acid	white
D	dilute sulphuric acid	yellow

0620_w/08/qp1

15 A gas is escaping from a pipe in a chemical plant.
A chemist tests this gas and finds that it is alkaline.
What is this gas?
A ammonia
B chlorine
C hydrogen
D sulfur dioxide
0620_s/12/qp11

16 The results of three tests on a solution of compound X are shown in the table.

test	result
aqueous sodium hydroxide added	white precipitate formed, soluble in excess
aqueous ammonia added	white precipitate formed, insoluble in excess
acidified silver nitrate added	white precipitate formed

What is compound X ?
A aluminium bromide
B aluminium chloride
C zinc bromide
D zinc chloride
0620_s/12/qp11

12 The diagram shows the reaction between zinc oxide and dilute hydrochloric acid.

Which terms describe the reaction?

	endothermic	neutralisation
A	\checkmark	\checkmark
B	\checkmark	χ
C	x	\checkmark
D	x	χ

0620_s/12/qp11

34 Which two substances, when reacted together, would form a salt that contains two of the essential elements provided by fertilisers?

A potassium hydroxide and nitric acid
B potassium hydroxide and sulfuric acid
C sodium hydroxide and nitric acid
D sodium hydroxide and sulfuric acid
0620_s/11/qp11

19 A solution contains barium ions and silver ions.
What could the anion be?
A chloride only
B nitrate only
C sulfate only
D chloride or nitrate or sulfate

20 A mixture containing two anions was tested and the results are shown below.

test	result
dilute nitric acid added	effervescence of a gas which turned limewater milky
dilute nitric acid added, followed by aqueous silver nitrate	yellow precipitate formed

Which anions were present?
A carbonate and chloride
B carbonate and iodide
C sulfate and chloride
D sulfate and iodide

17 Carbon dioxide is an acidic oxide that reacts with aqueous calcium hydroxide.
Which type of reaction takes place?
A decomposition
B fermentation
C neutralisation
D oxidation
0620_s/11/qp11

18 Which is not a typical property of an acid?
A They react with alkalis producing water.
B They react with all metals producing hydrogen.
C They react with carbonates producing carbon dioxide.
D They turn litmus paper red.
0620_s/11/qp11

35 To grow roses, a fertiliser containing nitrogen, phosphorus and potassium is needed.
For the best flowers, the fertiliser should contain a high proportion of potassium.
Which fertiliser is best for roses?

fertiliser	proportion by mass		
	N	P	K
A	9	0	25
B	13	13	20
C	29	5	0
D	29	15	5

0620_s/10/qp11

22 An excess of copper(II) oxide is added to dilute sulfuric acid to make crystals of hydrated copper(II) sulfate.

The processes listed may be used to obtain crystals of hydrated copper(II) sulfate.
1 concentrate the resulting solution
2 filter
3 heat the crystals
4 wash the crystals
Which processes are needed and in which order?
A 1, 2, 3 and 4
B 1, 2, 4 and 3
C 2, 1, 2 and 3
D 2, 1, 2 and 4
0620_s/10/qp11

19 Aqueous sodium hydroxide is added to a solid, X, and the mixture is heated.
A green precipitate is formed and an alkaline gas is given off.
Which ions are present in X ?
A $\quad \mathrm{NH}_{4}^{+}$and Fe^{2+}
B NH_{4}^{+}and Fe^{3+}
C OH^{-}and Fe^{2+}
D OH^{-}and Fe^{3+}
0620_s/10/qp11
20 An aqueous solution of the organic compound methylamine has a pH greater than 7.
Which statement about methylamine is correct?
A It neutralises an aqueous solution of sodium hydroxide.
B It reacts with copper(II) carbonate to give carbon dioxide.
C It reacts with hydrochloric acid to form a salt.
D It turns blue litmus red.
0620_s/10/qp11

36 Which element is not added to a fertiliser?
A aluminium
B nitrogen
C phosphorus
D potassium
0620_s/09/qp11

32 Substance K reacts with sodium carbonate to form a gas.
The gas turns limewater cloudy.
What is substance K and which process takes place in the reaction?

	K	process
A	ethanol	combustion
B	ethanol	neutralisation
C	hydrochloric acid	combustion
D	hydrochloric acid	neutralisation

0620_s/09/qp11

23 Some reactions of a substance, R , are shown in the diagram.

What type of substance is R ?
A an acid
B a base
C an element
D a salt
0620_s/09/qp11

22 An element E is burned in air. A white solid oxide is formed.
The oxide is tested with damp red litmus paper. The paper turns blue.
What is element E ?
A calcium
B carbon
C iodine
D sulfur
0620_s/09/qp11

20 Aqueous sodium hydroxide is added to a solution of a salt. A blue precipitate is formed which does not dissolve in excess.

Aluminium foil is added to the mixture and the mixture is warmed. A gas is produced that turns damp red litmus paper blue.

What is the name of the salt?
A ammonium nitrate
B ammonium sulfate
C copper(II) nitrate
D copper(II) sulfate
0620_s/09/qp11
21 The graph shows how the pH of soil in a field changed over time.
At which point was the soil neutral?

0620_s/09/qp11

35 The diagrams show four sacks which a farmer has in his barn.

Which sacks should be mixed to make a complete fertiliser, containing all the essential elements needed by plants?
A 1 and 2
B 1 and 4
C 2 and 3
D 3 and 4

0620_s/08/qp1

36 Which of the following does not produce carbon dioxide?
A adding hydrochloric acid to carbon
B adding hydrochloric acid to potassium carbonate
C burning coke
D burning petrol
0620_s/08/qp1

21 Which statement describes a test for carbon dioxide gas?
A It bleaches damp litmus paper.
B It relights a glowing splint.
C It turns cobalt(II) chloride paper pink.
D It turns limewater cloudy.
0620_s/08/qp1

22 A solution of zinc sulphate can be made by adding an excess either of zinc carbonate or of zinc hydroxide to dilute sulphuric acid.

In which forms are these zinc compounds added to the acid?

	zinc carbonate	zinc hydroxide
A	aqueous	aqueous
B	aqueous	solid
C	solid	aqueous
D	solid	solid

0620_s/08/qp1

23 Which aqueous ion causes a white precipitate to form when acidified aqueous silver nitrate is added to it?

A chloride
B iodide
C nitrate
D sulphate
0620_s/08/qp1

20 An oxide of element X dissolves in water to form a solution of pH 5 .
Which line in the table is correct?

	type of element	type of oxide
A	metallic	acidic
B	metallic	basic
C	non-metallic	acidic
D	non-metallic	basic

0620_s/08/qp1

19 The equation explains the colour change that occurs when aqueous potassium hydroxide is added to aqueous potassium dichromate(VI).

$$
\begin{gathered}
\underset{\begin{array}{c}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\
\text { dichassium }
\end{array}+2 \mathrm{KOH}}{\text { dichromate(VI) }} \begin{array}{c}
\underset{\begin{array}{c}
\text { 2otassium } \\
\text { chromate(VI) }
\end{array}}{2 \mathrm{~K}_{2} \mathrm{CrO}_{4}} \text { yellow }
\end{array}+\mathrm{H}_{2} \mathrm{O} \\
\text { orange }
\end{gathered}
$$

As a result of adding an excess of aqueous potassium hydroxide to aqeous potassium dichromate(VI), what happens to the oxidation state of the chromium and the pH of the reaction mixture?

	oxidation state of the chromium	pH of the mixture
A	decreases	decreases
B	decreases	increases
C	stays the same	decreases
D	stays the same	increases

0620_s/08/qp1

15 The diagram shows an experiment.

Which terms describe the experiment?

	endothermic	neutralisation
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

36 When limestone is heated very strongly in air, lime is made.
What is the formula of limestone and of lime?

	limestone	lime
A	CaCO_{3}	CaO
B	CaCO_{3}	$\mathrm{Ca}(\mathrm{OH})_{2}$
C	CaO	CaCO_{3}
D	$\mathrm{Ca}(\mathrm{OH})_{2}$	CaCO_{3}

0620_s/07/qp1

34 The diagram shows an experiment in which ammonia is released.

0620_s/07/qp1

35 A bag of fertiliser 'Watch it grow' contains ammonium sulphate and potassium sulphate.
Which of the three elements N, P and K does 'Watch it grow' contain?

	N	P	K
A	\checkmark	\checkmark	x
B	\checkmark	x	\checkmark
C	x	x	\checkmark
D	x	\checkmark	x

0620_s/07/qp1

21 Two indicators, bromophenol blue and Congo red, show the following colours in acidic solutions and in alkaline solutions.

indicator	acid	alkali
bromophenol blue	yellow	blue
Congo red	violet	red

A few drops of each indicator are added to separate samples of a solution of pH 2.
What are the colours of the indicators in this solution?

	in a solution of pH 2	
	bromophenol blue is	Congo red is
A	blue	red
B	blue	violet
C	yellow	red
D	yellow	violet

0620_s/07/qp1
22 Aqueous lead(II) nitrate is added to a solution containing iodide ions. Lead(II) iodide is formed.
Which type of reaction takes place?
A neutralisation
B oxidation
C precipitation
D reduction
0620_s/07/qp1

18 Aqueous sodium hydroxide and aqueous ammonia each give a white precipitate when added to aqueous zinc sulphate.

What happens when an excess of each of these reagents is added?

	excess $\mathrm{NaOH}(\mathrm{aq})$	excess $\mathrm{NH}_{3}(\mathrm{aq})$
A	precipitate dissolves	precipitate dissolves
B	precipitate dissolves	precipitate does not dissolve
C	precipitate does not dissolve	precipitate dissolves
D	precipitate does not dissolve	precipitate does not dissolve

0620_s/07/qp1

19 Aqueous sodium hydroxide is added to two different solutions with the results shown.

light blue precipitate formed

What are the cations present in \mathbf{X} and \mathbf{Y} ?

	\mathbf{X}	\mathbf{Y}
A	$\operatorname{copper}($ III	iron(II)
B	$\operatorname{copper(II)}$	$\operatorname{iron(III)~}$
C	iron(II)	$\operatorname{copper(II)~}$
D	iron(III)	$\operatorname{copper(II)~}$

0620_s/07/qp1

20 In which experiment does the limewater not turn milky?

33 The diagram shows an experiment.

What is the name of the gas and the final colour of the litmus paper?

	gas	colour
A	ammonia	blue
B	ammonia	red
C	chlorine	white
D	chlorine	red

0620_s/06/qp1

34 The diagram shows the pH values of the soil in \mathbf{X} and \mathbf{Y}, two parts of the garden of a house.

The house owner wishes to use lime to neutralise the soil in one part of the garden.
To which part should the lime be added, and why?

	part of garden	because lime is
A	\mathbf{X}	acidic
B	\mathbf{X}	basic
C	\mathbf{Y}	acidic
D	\mathbf{Y}	basic

31 Which metallic element is needed in a complete fertiliser?
A calcium
B magnesium
C potassium
D sodium
0620_s/06/qp1

19 The diagrams show three experiments using dilute sulphuric acid. Three different powders are added to the acid.

1

CuCO_{3} powder

3

The mixtures are stirred.
Which test-tubes then contain $\mathrm{Cu}^{2+}(\mathrm{aq})$ ions?
A 1 and 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3
0620_s/06/qp1

16 Barium hydroxide is an alkali. It reacts with hydrochloric acid.

What happens to the pH of a solution of hydrochloric acid as an excess of aqueous barium hydroxide is added?

A The pH decreases from 14 but becomes constant at 7.
B The pH decreases from 14 to about 1 .
C The pH increases from 1 but becomes constant at 7.
D The pH increases from 1 to about 14 .
0620_s/06/qp1

17 Element X is at the left-hand side of the Periodic Table.
Which line in the table shows the correct type and property of the oxide of X ?

	type of oxide	property of oxide
A	metallic	acidic
B	metallic	basic
C	non-metallic	acidic
D	non-metallic	basic

0620_s/06/qp1

12 The diagram shows an experiment in which magnesium oxide powder is added to dilute hydrochloric acid.

	exothermic	neutralisation
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

0620_s/06/qp1

34 The presence of nitrates in soil can be shown by warming the soil with aqueous sodium hydroxide and aluminium foil.

Which gas is given off?
A ammonia
B carbon dioxide
C nitrogen
D nitrogen dioxide
0620_s/05/qp1

19 Which property does hydrochloric acid have?
A It gives a pale blue precipitate with aqueous copper(II) sulphate.
B It gives a white precipitate with aqueous barium nitrate.
C It releases ammonia from aqueous ammonium sulphate.
D It releases hydrogen with zinc powder.

20 Hydrochloric acid is used to clean a metal surface by removing the oxide layer on the metal.
This is because hydrochloric acid has aX..... pH and the metal oxide isY.....
What are \mathbf{X} and \mathbf{Y} ?

	\mathbf{X}	\mathbf{Y}
A	high	acidic
B	high	basic
C	low	acidic
D	low	basic

0620_s/05/qp1

21 The apparatus shown can be used to prepare aqueous copper(II) sulphate.

What are substances \mathbf{X} and \mathbf{Y} ?

	substance \mathbf{X}	substance \mathbf{Y}
A	copper	iron(II) sulphate
B	copper(II) chloride	sulphuric acid
C	copper(II) oxide	sulphuric acid
D	sulphur	copper(II) chloride

0620_s/05/qp1

22 In the experiment shown, the dilute sulphuric acid is run into the flask of aqueous barium hydroxide until the reaction is complete.

Which processes occur in this reaction?

	neutralisation	precipitation
A	\checkmark	\checkmark
B	\checkmark	\boldsymbol{x}
C	χ	\checkmark
D	χ	\boldsymbol{X}

0620_s/05/qp1

34 The diagrams show the growth of four plants.

Which element is acting as a fertiliser?
A Cl
B N
C Na
D S

30 The pH of some aqueous sodium hydroxide is measured. The solution is then distilled as shown.

How do the pH values of the distillate and of the solution left in the flask compare with the original?

	pH of the distillate	pH of the solution left in the flask
A	higher	higher
B	higher	lower
C	lower	higher
D	lower	lower

0620_s/04/qp1

21 Aqueous sodium hydroxide is added to two different solutions with the results shown.

Which cation is present in \mathbf{X} and in \mathbf{Y} ?

	\mathbf{X}	\mathbf{Y}
A	ammonium	iron(II)
B	copper(II)	ammonium
C	iron(II)	copper(II)
D	iron(II)	ammonium

19 An aqueous solution contains either aluminium sulphate or zinc sulphate.
Which aqueous reagent can be used to confirm which salt is present?
A ammonia
B barium chloride
C sodium hydroxide
D sulphuric acid
0620_s/04/qp1

20 Compound \mathbf{X}

- does not dissolve in water,
- does not react with water,
- is used to control soil acidity.

What is \mathbf{X} ?
A calcium carbonate
B calcium chloride
C calcium hydroxide
D calcium oxide
0620_s/04/qp1

9 The oxide $\mathrm{Pb}_{3} \mathrm{O}_{4}$ reacts with dilute nitric acid to form lead(II) nitrate, lead(IV) oxide and another product.

What is the equation for this reaction?
A $\mathrm{Pb}_{3} \mathrm{O}_{4}+4 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B $\mathrm{Pb}_{3} \mathrm{O}_{4}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{PbNO}_{3}+\mathrm{PbO}_{4}+\mathrm{H}_{2}$
C $\mathrm{Pb}_{3} \mathrm{O}_{4}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4}+2 \mathrm{PbO}+2 \mathrm{H}_{2} \mathrm{O}$
D $2 \mathrm{~Pb}_{3} \mathrm{O}_{4}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{~Pb}_{2} \mathrm{NO}_{3}+2 \mathrm{PbO}_{2}+\mathrm{H}_{2}$

35 The diagram shows how the pH of an industrial waste changes when substance \mathbf{X} is added to it.

What is substance \mathbf{X} ?
A coal
B lime
C salt
D water

34 A newspaper article claims that carbon dioxide is formed as follows.
1 during respiration
2 when calcium carbonate reacts with hydrochloric acid
3 when methane burns in air
Which statements are correct?
A 1, 2 and 3
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only
0620_s/03/qp1

33 A student heats a mixture of ammonium chloride and calcium hydroxide. She tests the gas given off with damp red litmus paper.

What is the name of the gas and the final colour of the litmus paper?

	gas	colour
A	ammonia	blue
B	ammonia	red
C	chlorine	red
D	chlorine	white

0620_s/03/qp1

20 Which test method and gas are correctly linked?

	test method	gas
A	a lighted splint	oxygen
B	a glowing splint	hydrogen
C	damp litmus paper	chlorine
D	limewater	ammonia

0620_s/03/qp1
21 Water is added to a test-tube containing dilute sulphuric acid of pH 4 .
What could be the pH of the resulting solution?
A 8
B 6
C 4
D 2

0620_s/03/qp1

19 Which substance does not form copper(II) sulphate with warm, dilute sulphuric acid?
A copper
B copper(II) carbonate
C copper(II) hydroxide
D copper(II) oxide
0620_s/03/qp1

16 When hydrated copper(II) sulphate is heated in the apparatus shown, solid \mathbf{X} and liquid \mathbf{Y} produced.

Which changes are noticed when liquid \mathbf{Y} is added to cold solid \mathbf{X} ?

	colour change	heat change
A	blue to white	heat given out
B	blue to white	heat taken in
C	white to blue	heat given out
D	white to blue	heat taken in

0620_s/03/qp1

34 To grow roses, a fertiliser containing nitrogen, phosphorus and potassium is needed. For a good yield, the fertiliser should contain a high proportion of potassium.

Which fertiliser is best for roses?

fertiliser	proportion by mass		
	N	P	K
A	29	5	0
B	29	15	5
C	13	13	20
D	9	0	25

0620_w/07/qp1

21 Two tests are carried out on a solution containing both copper(II) sulphate and sodium chloride. A student records results as shown.

test	reagent	result
1	aqueous barium chloride	blue precipitate
2	aqueous silver nitrate	white precipitate

Which results are correctly recorded?

	1	2
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

0620_w/07/qp1

22 Aqueous solution \mathbf{S} is added to aqueous ammonium chloride. The mixture is heated. Ammonia gas is given off.

What could solution S contain?
A aluminium
B ammonium sulphate
C sodium chloride
D sodium hydroxide

19 Gas X is passed into water as shown.

The pH of the water changes from 7 to 10 .
What is gas \mathbf{X} ?
A ammonia
B carbon dioxide
C nitrogen
D sulphur dioxide
0620_w/07/qp1

18 Dilute sulphuric acid is added to a mixture of copper, magnesium and zinc in a beaker. The beaker is left for about 10 minutes and its contents are then filtered.

What does the filtrate contain?
A copper(II) sulphate, magnesium sulphate and zinc sulphate
B copper(II) sulphate and zinc sulphate only
C magnesium sulphate and zinc sulphate only
D magnesium sulphate only
0620_w/07/qp1

16 The mass of a beaker and its contents is plotted against time.
Which graph represents what happens when sodium carbonate reacts with an excess of dilute hydrochloric acid in an open beaker?

0620_w/07/qp1

21 The statements are about metals and their oxides.
Metals ...X... electrons to form ions. The oxides of metals are ...Y....
Which words correctly complete the statements?

	X	Y
A	gain	acidic
B	gain	basic
C	lose	acidic
D	lose	basic

17 Acids react with bases, carbonates and metals.
Which of these reactions produce a gas?

	reaction of acid with a		
	base	carbonate	metal
	\checkmark	\checkmark	\checkmark
B	\checkmark	x	x
C	x	\checkmark	\checkmark
D	x	\checkmark	x

0620_w/06/qp1
18 Which properties does an acid have?
1 reacts with ammonium sulphate to form ammonia
2 turns red litmus blue

	1	2
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

0620_w/06/qp1

19 The diagrams show two experiments, one to make barium chloride and the other to make barium sulphate.

In each experiment, the acid is run into the conical flask until the resulting liquid has pH 7 .
What are the next steps to obtain samples of the solid salts?

	barium chloride	barium sulphate
A	crystallisation	crystallisation
B	crystallisation	filtration
C	filtration	crystallisation
D	filtration	filtration

33 The diagram shows the results of a pH test on a sample of garden soil.

What could be added to the soil to change its pH to 7 ?
A ammonium nitrate
B lime
C sand
D sodium chloride
0620_w/05/qp1

31 The diagrams show three experiments.

In which experiments is ammonia formed?
A 1 only
B 2 only
C 3 only
D 1, 2 and 3

0620_w/05/qp1

19 Pure zinc sulphate can be prepared by adding an excess of either zinc carbonate or an excess of zinc hydroxide to dilute sulphuric acid.

In which form are these zinc compounds used?
zinc carbonate zinc hydroxide
A

B

(

20 Which aqueous ion causes a yellow precipitate to form when acidified aqueous lead(II) nitrate is added to it?

A chloride
B iodide
C nitrate
D sulphate

0620_w/05/qp1

16 An excess of acid in the stomach causes indigestion that can be cured by an anti-indigestion tablet.

What should the tablet contain to decrease the acidity?
A an acidic substance
B an alkaline substance
C a neutral substance
D Universal Indicator
0620_w/05/qp1

17 A solution is made by adding sodium oxide to water.
Which pH change can occur?

	pH change		
A	1	\rightarrow	7
B	7	\rightarrow	1
C	7	\rightarrow	12
D	12	\rightarrow	7

0620_w/05/qp1

18 Which element has an oxide that forms a salt with an alkali?
A N
B Na
C Ne
D Ni

0620_w/05/qp1

7 Bottles of sodium hydroxide, sodium chloride and sugar have lost their labels.
Students test a sample from each bottle. Their results are shown in the table.

bottle	addition of water	conductivity of solution
1	forms an alkaline solution	conducts electricity
2	forms a neutral solution	conducts electricity
3	forms a neutral solution	does not conduct electricity

What are the correct labels for each bottle?

	bottle 1	bottle 2	bottle 3
A	sodium hydroxide	sodium chloride	sugar
B	sodium hydroxide	sugar	sodium chloride
C	sodium chloride	sugar	sodium hydroxide
D	sugar	sodium hydroxide	sodium chloride

0620_w/05/qp1

34 A sample of acid rainwater $(\mathrm{pH}=4)$ is passed down a glass column packed with marble chippings (calcium carbonate). The water coming from the bottom of the column is collected in a beaker. The pH is now 6.

What causes the change in pH ?
A The acid has been filtered.
B The acid has been neutralised.
C The acid is made more concentrated.
D The acid is precipitated.
0620_w/04/qp1

29 What is used to test for the presence of water?
A anhydrous copper(II) sulphate
B aqueous barium chloride
C aqueous sodium hydroxide
D Universal indicator paper
0620_w/04/qp1

19 Aqueous ammonia is added to a solution of a metal sulphate.
A green precipitate that is insoluble in excess of the aqueous ammonia forms.
Which metal ion is present?
A Ca^{2+}
B Cu^{2+}
C Fe^{3+}
D Fe^{2+}

0620_w/04/qp1

20 The chart shows the colour ranges of four different indicators.
Which indicator is blue in an acidic solution?

21 An ion X in solution is identified as shown.

What is ion \mathbf{X} ?
A Al^{3+} (aq)
B $\quad \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$
C $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
D $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

0620_w/04/qp1

33 An NPK fertiliser contains three elements required for plant growth.
Which two compounds, when mixed, provide the three elements?
A ammonium phosphate + potassium nitrate
B ammonium sulphate + potassium nitrate
C ammonium sulphate + sodium nitrate
D sodium phosphate + potassium chloride

20 The diagram shows the result of testing an aqueous solution \mathbf{Z}.

Which ion is present in solution \mathbf{Z} ?
A carbonate
B chloride
C nitrate
D sulphate
0620_w/03/qp1
21 The pH values of four solutions are shown.

Mixing combinations of these solutions can give a solution of pH 6 .
Which combination of solutions could not do this?
A P and R
B P and S
C Q and R
D R and S
0620_w/03/qp1

19 Which two processes are involved in the preparation of magnesium sulphate crystals from dilute sulphuric acid and an excess of magnesium oxide?

A decomposition and filtration
B decomposition and oxidation
C neutralisation and filtration
D neutralisation and oxidation
0620_w/03/qp1

15 Potassium nitrate is a salt and dissolves in water in an endothermic process.
What happens to the temperature and pH of the water as the salt dissolves?

	temperature increases	pH falls
A	\checkmark	\checkmark
B	\checkmark	x
C	x	\checkmark
D	x	x

0620_w/03/qp1

35 Lime is used to treat an industrial waste.

Which pH change occurs in the treatment?

	untreated waste	\rightarrow	treated waste
A	acidic	\rightarrow	neutral
B	alkaline	\rightarrow	acidic
C	alkaline	\rightarrow	neutral
D	neutral	\rightarrow	acidic
_w/02/qp1			

33 Which two other compounds should be added to ammonium sulphate to make a complete NPK fertiliser?

A $\mathrm{KNO}_{3}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$
B $\mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{KNO}_{3}$
C $\mathrm{NaCl}, \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
D $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$
0620_w/02/qp1

20 Which element reacts with dilute sulphuric acid to produce hydrogen?
A carbon
B chlorine
C copper
D zinc
0620_w/02/qp1

21 For which pH change is there the largest increase in acidity?

	initial pH	final pH
A	1	3
B	2	6
C	3	1
D	6	2

O/O2/qp1

0620_w/02/qp1

19 Aqueous lead(II) nitrate is added to a solution containing iodide ions. Lead(II) iodide is formed. Which type of reaction takes place?

A neutralisation
B oxidation
C precipitation
D reduction

9 One method of producing carbon dioxide is to react calcium carbonate with dilute hydrochloric acid.

What is the balanced chemical equation for the reaction?
A $\mathrm{CaCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}+\mathrm{HCl}$
B $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
C $\mathrm{CaCO}_{3}+4 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O}$
D $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{HCl} \longrightarrow \mathrm{CaCl}+2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
0620_w/02/qp1

32 Which compound would not be an effective fertiliser?
A ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$
B calcium oxide, CaO
C calcium phosphate, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
D potassium nitrate, KNO_{3}
0620_s/14/qp12

20 Copper carbonate reacts with dilute sulfuric acid to make copper sulfate.

$$
\mathrm{CuCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which row gives the correct order of steps for making copper sulfate crystals?

	step 1	step 2	step 3	step 4
A	add excess acid to the copper carbonate	filter	evaporate filtrate to point of crystallisation add excess acid to the copper carbonate	leave to cool
Cadd excess copper adrater to dryness	leave to cool evaporate to point of crystallisation add excess copper	leave to cool arbonate to the acid	filter	evaporate filtrate to point of crystallisation

0620_s/14/qp11

19 Element X forms an oxide, XO , that neutralises sulfuric acid.
Which row describes X and $X O$?

	element X	nature of oxide, XO
A	metal	acidic
B	metal	basic
C	non-metal	acidic
D	non-metal	basic

0620_s/14/qp12

17 Different plants grow best under different pH conditions.
Which plant grows best in alkaline soil?

	plant	grows best in soil at pH
A	cabbage	$6-8$
B	potato	$4-7$
C	strawberry	$5-7$
D	wheat	$6-7$

0620_s/14/qp12

32 Which compound contains two of the three essential elements needed for a complete fertiliser?
A ammonium chloride
B ammonium nitrate
C ammonium phosphate
D ammonium sulfate
0620_s/14/qp11

21 Which acid reacts with ammonia to produce the salt ammonium sulfate?
A hydrochloric
B nitric
C phosphoric
D sulfuric
0620_s/14/qp11
22 Aqueous sodium hydroxide is added to solid X and the mixture is heated.
A green precipitate is formed and an alkaline gas is given off.
Which ions are present in X ?
A $\mathrm{NH}_{4}{ }^{+}$and Fe^{2+}
B $\mathrm{NH}_{4}{ }^{+}$and Fe^{3+}
C OH^{-}and Fe^{2+}
D OH^{-}and Fe^{3+}
0620_s/14/qp11

20 Only two elements are liquid at $20^{\circ} \mathrm{C}$. One of these elements is shiny and conducts electricity.
This suggests that this element is a $\ldots \ldots .1 \ldots .$. and therefore its oxide is2..... .
Which words correctly complete gaps 1 and 2?

	1	2
A	metal	acidic
B	metal	basic
C	non-metal	acidic
D	non-metal	basic

0620_s/14/qp11

19 Which statements about alkalis are correct?
1 When reacted with an acid, the pH of the alkali increases.
2 When tested with litmus, the litmus turns blue.
3 When warmed with an ammonium salt, ammonia gas is given off.
A 1, 2 and 3
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only

9 A compound contains one atom of calcium, two atoms of hydrogen and two atoms of oxygen.
What is the correct chemical formula of the compound?
A $\mathrm{CaO}_{2} \mathrm{H}_{2}$
B HOCaOH
C $\mathrm{H}_{2} \mathrm{CaO}_{2}$
D $\mathrm{Ca}(\mathrm{OH})_{2}$

0620_s/14/qp11

33 Nitrogen, phosphorus and potassium are essential elements for plant growth.
Which mixture provides all three essential elements?

	mixture	formula
A	ammonium phosphate potassium chloride	$\begin{gathered} \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \\ + \\ \mathrm{KCl} \end{gathered}$
B	ammonium phosphate ammonium nitrate	$\begin{gathered} \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \\ + \\ \mathrm{NH}_{4} \mathrm{NO}_{3} \end{gathered}$
C	ammonium phosphate ammonium chloride	$\begin{gathered} \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \\ + \\ \mathrm{NH}_{4} \mathrm{Cl} \end{gathered}$
D	ammonium nitrate potassium chloride	$\begin{gathered} \mathrm{NH}_{4} \mathrm{NO}_{3} \\ + \\ \mathrm{KCl} \end{gathered}$

0620_s/13/qp11

19 The diagram shows one period of the Periodic Table.

Which two elements form acidic oxides?
A carbon and lithium
B carbon and neon
C carbon and nitrogen
D nitrogen and neon
0620_s/13/qp11

18 Ant stings hurt because of the methanoic acid produced by the ant.
Which substance could, most safely, be used to neutralise the acid?

	substance	pH
A	baking soda	8
B	car battery acid	1
C	lemon juice	3
D	oven cleaner	14

0620_s/13/qp11

33 Which substance would make the best general fertiliser?

	relative amount			solubility in water
	P	K	N	
A	5	0	5	soluble
B	5	5	20	insoluble
C	5	10	15	soluble
D	10	5	10	insoluble

0620_s/13/qp12

19 Which statement about the reaction of acids is correct?
A They react with ammonium salts to form a salt and ammonia only.
B They react with metal carbonates to give a salt and carbon dioxide only.
C They react with metal hydroxides to give a salt and water only.
D They react with metals to give a salt, hydrogen and water only. 0620_s/13/qp12

20 The diagram shows an experiment.

What happens to the pieces of litmus paper?

	blue litmus paper	red litmus paper
A	changes colour	changes colour
B	changes colour	no colour change
C	no colour change	changes colour
D	no colour change	no colour change

0620_s/13/qp12

21 Two indicators, bromophenol blue and Congo red, show the following colours in acidic solutions and in alkaline solutions.

indicator	acid	alkali
bromophenol blue	yellow	blue
Congo red	violet	red

A few drops of each indicator are added to separate samples of a solution of pH 2.
What are the colours of the indicators in this solution?

	in a solution of pH 2	
	bromophenol blue is	Congo red is
A	blue	red
B	blue	violet
C	yellow	red
D	yellow	violet

16 Two oxides, X and Y, are added separately to dilute sulfuric acid and dilute sodium hydroxide.
X reacts with dilute sulfuric acid but Y does not react.
Y reacts with aqueous sodium hydroxide but X does not react.
Which type of oxide are X and Y ?

	acidic oxide	basic oxide	metallic oxide
A	X	Y	X
B	X	Y	Y
C	Y	X	X
D	Y	X	Y

0620_s/13/qp12

33 Air containing an acidic impurity was neutralised by passing it through a column containing substance X .

What is substance X ?
A calcium oxide
B sand
C sodium chloride
D concentrated sulfuric acid
0620_s/12/qp11

30 Fertilisers need to supply crops with three main elements.
Which compound contains all three of these elements?
A $\mathrm{H}_{3} \mathrm{PO}_{4}$
B KNO_{3}
C $\mathrm{NH}_{4} \mathrm{~K}_{2} \mathrm{PO}_{4}$
D $\mathrm{NH}_{4} \mathrm{NO}_{3}$

0620_s/12/qp11

17 The graph shows how the pH changes as an acid is added to an alkali.

$$
\text { acid }+ \text { alkali } \rightarrow \text { salt }+ \text { water }
$$

Which letter represents the area of the graph where both acid and salt are present?

0620_s/12/qp11

18 Dilute hydrochloric acid is added to a solid, S.
A flammable gas, G , is formed. Gas G is less dense than air.
What are S and G ?

	solid S	gas G
A	copper	hydrogen
B	copper carbonate	carbon dioxide
C	zinc	hydrogen
D	zinc carbonate	carbon dioxide

0620_s/12/qp11

THEORY: Acids, Bases \& Salts (iGCSE)

8 (a) Describe how cobalt chloride paper can be used to test for the presence of water.
\qquad
\qquad
(b) Complete the description of the preparation of crystals of the soluble salt, cobalt(II) chloride-6-water, $\mathrm{CoCl}_{2}, 6 \mathrm{H}_{2} \mathrm{O}$, from the insoluble base, cobalt(II) carbonate.

$$
\mathrm{CoCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CoCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$50 \mathrm{~cm}^{3}$ of dilute hydrochloric acid, concentration $2.2 \mathrm{~mol} / \mathrm{dm}^{3}$, was heated and cobalt(II) carbonate was added in small amounts until \qquad
\qquad
\qquad
\qquad

6 Rubidium and strontium are very reactive metals at the top of the reactivity series. Because their ions have different charges, their compounds behave differently when heated.
(a) The formulae of the ions of these two elements are Rb^{+}and Sr^{2+}.

Explain why these metals, which are in different groups, form ions which have different charges.
\qquad
\qquad
(b) Strontium carbonate is similar to calcium carbonate. It is insoluble in water and it decomposes when heated. Rubidium carbonate ìs soluble in water and does not decompose when heated.
(i) Describe a method to prepare a pure sample of the insoluble salt, strontium carbonate, by precipitation.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) When a mixture of sulfur and potassium nitrate is burned and the products are dissolved in water, sulfuric acid is formed.
(i) The sulfuric acid formed by this method is not pure. It contains another acid. Deduce the identity of this acid.
\qquad
(ii) The heat causes some of the potassium nitrate to decompose. Write the equation for the action of heat on potassium nitrate.
\qquad

1 (a) Match the following pH values to the solutions given below.

$$
\begin{array}{lllll}
1 & 3 & 7 & 10 & 13
\end{array}
$$

The solutions all have the same concentration.
solution pH
aqueous ammonia, a weak base \qquad
dilute hydrochloric acid, a strong acid
aqueous sodium hydroxide, a strong base
aqueous sodium chloride, a salt \qquad
dilute ethanoic acid, a weak acid \qquad
(b) Explaîn why solutions of hydrochloric acid and ethanoic acid with the same concentration, in $\mathrm{mol} / \mathrm{dm}^{3}$, have a different pH .
\qquad
\qquad
\qquad
(c) Measuring pH is one way of distinguishing between a strong acid and a weak acid. Describe another method.
method \qquad
\qquad
results \qquad
\qquad
(a) Sulfonic acids are made from alkanes and oleum, $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$.

$$
\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \rightarrow \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3} \mathrm{H}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

(b) The formula of the hexanesulfonate ion is $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3}$ -

The formula of the barium ion is Ba^{2+}. What is the formula of barium hexanesulfonate?
\qquad
(c) Complete the following equations.
 acid

\qquad
(iii) $-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3} \mathrm{H}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow$ \qquad $+\ldots \ldots \ldots+$ $+$ $+\quad$.
(d) (i) Sulfuric acid is a strong acid.

You are given aqueous sulfuric acid, concentration $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$, and aqueous hexanesulfonic acid, concentration $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$. Describe how you could show that hexanesulfonic acid is also a strong acid.
\qquad
\qquad
(ii) Deduce why, for a fair comparison, the two acid solutions must have different concentrations.
\qquad

(iii) Explain the terms strong acid and weak acid.
(c) It is possible to determine whether zirconium(IV) oxide is acidic, neutral, basic or amphoteric using an acid and an alkali. Complete the table of possible results. If the oxide is predicted to react write " R ', if it is predicted not to react write ' $N R$ '.

if the oxide is	predicted result with hydrochloric acid	predicted result with aqueous sodium hydroxide
acidic		
neutral		
basic		
amphoteric		

5 Silver(I) chromate(VI) is an insoluble salt. It is prepared by precipitation.
$20 \mathrm{~cm}^{3}$ of aqueous silver(I) nitrate, concentration $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$, was mixed with $20 \mathrm{~cm}^{3}$ of aqueous potassium chromate(VI), concentration $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$. After stirring, the mixture was filtered. The precipitate was washed several times with distilled water. The precipitate was then left in a warm oven for several hours.

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

(a) What difficulty arises if the name of a compound of a transition element does not include its oxidation state, for example iron oxide?
\qquad
\qquad
(b) These questions refer to the preparation of the salt.
(i) Why is it necessary to filter the mixture after mixing and stirring?
\qquad
(ii) What is the purpose of washing the precipitate?
(iii) Why leave the precipitate in a warm oven?
\qquad
(c) (i) Explain why the concentrations of silver(I) nitrate and potassium chromate(VI) are different.
(b) Basic lead(II) carbonate is heated in the apparatus shown below. Water and carbon dioxide are produced.

(i) Silica gel absorbs water. Silica gel often contaỉns anhydrous cobalt(II) chloride. When this absorbs water it changes from blue to pink. Suggest a reason.
\qquad
(ii) Soda lime is a mixture of sodium hydroxide and calcium oxide. Why do these two substances react with carbon dioxide?
\qquad
\qquad
(iii) Name two substances formed when soda lime reacts with carbon dioxide.
\qquad
(b) Zinc metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blende, ZnS . Zinc blende contains silver and lead compounds as well as zinc sulfide.
Zinc blende is converted into impure zinc oxide by heating it în air.

$$
2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}
$$

(i) Describe how zinc oxide is reduced to zinc.
\qquad
(ii) Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfate. Write a balanced symbol equation for this reaction.
\qquad
(iii) This impure solution of zinc sulfate contaỉns zinc ions, silver(I) ions and lead ions. Explain why the addition of zinc powder produces pure zilnc sulfate solution. Include at least one ionic equation in your explanation.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Strontium chloride-6-water can be made from the însoluble compound, strontium carbonate, by the following reactions.
$\mathrm{SrCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{SrCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{SrCl}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
The following method was used to prepare the crystals.
1 Add excess strontium carbonate to hot hydrochloric acid.
2 Filter the resulting mixture.
3 Partially evaporate the filtrate and allow to cool.
4 Filter off the crystals of $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
5 Dry the crystals between filter papers.
(i) How would you know when excess strontium carbonate had been added in step 1?
\qquad
\qquad
(ii) Why is it necessary to filter the mixture in step 2?
\qquad
(iii) In step 3, why partially evaporate the filtrate rather than evaporate to dryness?
\qquad

4 Silicon(IV) oxide, SiO_{2}, and zirconium(IV) oxide, ZrO_{2}, are both macromolecules.
They have similar physical properties but silicon(IV) oxide is acidic and zirconium(IV) oxide is amphoteric.
(a) Define the term macromolecule.
\qquad
\qquad
(b) (i) Predict three physical properties of these two oxides.
\qquad
\qquad
\qquad
(ii) Name an element which has the same physical properties as these two oxides.
\qquad
(c) (i) Name a reagent that reacts with the oxides of both elements.
\qquad
(ii) Name a reagent that reacts with only one of the oxides. reagent \qquad oxide which reacts

7 The hydroxides of the Group I metals are soluble in water. Most other metal hydroxides are insoluble in water.
(a) (i) Crystals of lithium chloride can be prepared from lithium hydroxide by titration.

$25.0 \mathrm{~cm}^{3}$ of aqueous lithium hydroxide is pipetted into the conical flask. A few drops of an îndicator are added. Dilute hydrochloric acid is added slowly to the alkali until the indicator just changes colour. The volume of acid needed to neutralise the lithium hydroxide is noted.

A neutral solution of lithîum chloride, which still contains the indicator, is left. Describe how you could obtain a neutral solution of lithium chloride which does not contain an îndicator.

\qquad
(ii) You cannot prepare a neutral solution of magnesium chloride by the same method. Describe how you could prepare a neutral solution of magnesium chloride.
\qquad
\qquad
\qquad

6 Ammonia is a compound which only contains the elements nitrogen and hydrogen. It is a weak base.
(a) (i) Define the term base.
\qquad
(ii) Given aqueous solutions of ammonia and sodium hydroxide, both having a concentration of $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$, how could you show that ammonia is the weaker base?
\qquad
\qquad
\qquad
(e) Hydrazine is a weak base and it removes dissolved oxygen from water. It is added to water in steel boilers to prevent rusting.
(i) One way it reduces the rate of rusting is by changing the pH of water.

What effect would hydrazine have on the pH of water?
(ii) Give a reason, other than pH , why hydrazine reduces the rate of rusting.
\qquad
0620/s13/qp31
(b) The equation for the reaction in experiment 1 is:

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Complete the following ionic equation.

(e) The hydroxide of \mathbf{M} is a white powder which is insoluble in water. Describe how you could show that this hydroxide is amphoteric.
\qquad
\qquad
\qquad

2 Three ways of making salts are

- titration using a soluble base or carbonate
- neutralisation using an insoluble base or carbonate
- precipitation.
(a) Complete the following table of salt preparations.

method	reagent 1	reagent 2	salt
titration			sodium nitrate
neutralisation	nitric acid		copper(II) nitrate
precipitation			silver(I) chloride
neutralisation	uric acid	zinc(II) carbonate	-

(b) (i) Write an ionic equation with state symbols for the preparation of silver(I) chloride.
(ii) Complete the following equation.

$$
\mathrm{ZnCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \ldots \ldots \ldots+\ldots \ldots \ldots \ldots+
$$

\qquad
(b) Phosphorus trichloride reacts with water to form two acids.
(i) Balance the equation for this reaction.

$$
\mathrm{PCl}_{3}+\ldots \ldots . \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \ldots . \mathrm{HCl}+\mathrm{H}_{3} \mathrm{PO}_{3}
$$

(ii) Describe how you could show that phosphorus acid, $\mathrm{H}_{3} \mathrm{PO}_{3}$, is a weaker acid than hydrochloric acid.
\qquad
\qquad
\qquad
(iii) Two salts of phosphorus acid are its sodium salt, which is soluble in water, and its calcium salt which is insoluble in water. Suggest a method of preparation for each of these salts from aqueous phosphorus acid. Specify any other reagent needed and briefly outline the method.
sodium salt \qquad
\qquad
\qquad
\qquad
calcium salt \qquad
\qquad
\qquad
\qquad

5 Hydriodic acid, $\mathrm{HI}(\mathrm{aq})$, is a strong acid. Its salts are iodides.
(a) It has the reactions of a typical strong acid. Complete the following equations.
(i) \qquad Lì + \qquad HI \rightarrow \qquad $+$ \qquad

(iii) $\mathrm{MgO}+$ \qquad HI \rightarrow \qquad $+$ \qquad
(b) Two of the reactions in (a) are acid/base and one is redox. Which one is redox? Explain your choice.
(d) $20.0 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide, $2.00 \mathrm{~mol} / \mathrm{dm}^{3}$, was placed in a beaker. The temperature of the alkali was measured and $1.0 \mathrm{~cm}^{3}$ portions of hydriodic acid were added. After each addition, the temperature of the mixture was measured. Typical results are shown on the graph.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HI}(\mathrm{aq}) \rightarrow \mathrm{NaI}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(i) Explain why the temperature increases rapidly at first then stops increasing.
\qquad
\qquad
(ii) Suggest why the temperature drops after the addition of $18.0 \mathrm{~cm}^{3}$ of acid.
\qquad
(iii) In another experiment, it was shown that $15.0 \mathrm{~cm}^{3}$ of the acid neutralised $20.0 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide, $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$. Calculate the concentration of the acid.
\qquad
\qquad
(c) The selenide ion reacts with water.

$$
\mathrm{Se}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HSe}^{-}+\mathrm{OH}^{-}
$$

What type of reagent is the selenide ion in this reaction? Give a reason for your choice.
\qquad
\qquad
(d) Thallium(I) hydroxỉde ìs an alkalī. It has similar properties to sodium hydroxide.
(i) Complete the following word equation.

(ii) Complete the equation.
$\ldots \mathrm{TlOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $+$ \qquad
(iii) Aqueous thallium(I) hydroxide was added to aqueous iron(II) sulfate. Describe what you would see and complete the ionic equation for the reaction.
observation \qquad
\qquad
equation
$\mathrm{Fe}^{2+}+$ \qquad $\mathrm{OH}^{-} \rightarrow$

6 Thallium is a metal in Group III. It has oxidation states of +1 and +3 .
(a) Give the formula for the following thallium compounds.
(i) thallium(I) sulfide .. [1]

(b) Thallium(I) chloride is insoluble in water. Complete the description of the preparation of a pure sample of this salt.

Step 1
Mix a solution of sodium chloride with thallium(I) sulfate solution. A white precipitate forms.

Step 2
\qquad
Step 3
\qquad
Step 4
\qquad
(c) When thallium(I) chloride is exposed to light, a photochemical reaction occurs. It changes from a white solid to a violet solid.
(i) Name another metal halide which changes colour when exposed to light. Give the major use of this metal halide.
name

use
(b) They react with water to form acidic solutions.

$$
\begin{aligned}
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}+\mathrm{Cl}^{-} \\
\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}++\mathrm{F}^{-}
\end{aligned}
$$

(i) Explain why water behaves as a base in both of these reactions.
\qquad
\qquad
(ii) At equilibrium, only 1% of the hydrogen chloride exists as molecules, the rest has formed ions. In the other equilibrium, 97% of the hydrogen fluoride exists as molecules, only 3% has formed ions.

What does this tell you about the strength of each acid?
\qquad
\qquad
(iii) How would the pH of these two solutions differ?

5 Insoluble salts are made by precipitation.
(a) A preparation of the insoluble salt calcium fluoride is described below.

To $15 \mathrm{~cm}^{3}$ of aqueous calcium chloride, $30 \mathrm{~cm}^{3}$ of aqueous sodium fluoride is added. The concentration of both solutions is $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$. The mixture is filtered and the precipitate washed with distilled water. Finally, the precipitate is heated in an oven.
(i) Complete the equation.

$$
\mathrm{Ca}^{2+}+\ldots \ldots \mathrm{F}^{-} \longrightarrow \ldots \ldots
$$

(ii) Why is the volume of sodium fluoride solution double that of the calcium chloride solution?
\qquad
(iii) Why is the mixture washed with distilled water?
\qquad
\qquad
(iv) Why is the solid heated?
\qquad

(b) The formulae of insoluble compounds can be found by precipitation reactions.

To $12.0 \mathrm{~cm}^{3}$ of an aqueous solution of the nitrate of metal T was added $2.0 \mathrm{~cm}^{3}$ of aqueous sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$. The concentration of both solutions was $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

What is the formula of the phosphate of metal T? Give your reasoning.
\qquad
[Total: 8]
0620/s09/qp31

7 Crystals of sodium sulphate-10-water, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, are prepared by titration.

(a) $25.0 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide is pipetted into a conical flask. A few drops of an indicator are added. Using a burette, dilute sulphuric acid is slowly added until the indicator just changes colour. The volume of acid needed to neutralise the alkali is noted.
Suggest how you would continue the experiment to obtain pure, dry crystals of sodium sulphate-10-water.

(c) Carbonyl chloride reacts with water to form two acidic compounds. Suggest which acidic compounds are formed.

1. \qquad
2.

(d) The structural formula of carbonyl chloride is given below.

Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.
Use x for an electron from a chlorine atom.
Use o for an electron from a carbon atom.
Use \bullet for an electron from an oxygen atom.

4 Sulphuric acid is a typical strong acid.
(a) Change the equations given into a different format.
(i) $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}$ Change into a word equation.
(ii) lithium oxide + sulphuric acid \longrightarrow lithium sulphate + water Change into a symbol equation.
(iii) $\mathrm{CuO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$ Change the ionic equation into a symbol equation.
(iv) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Change into a word equation.
\qquad
(b) When sulphuric acid dissolves in water, the following reaction occurs.
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Explain why water is behaving as a base in this reaction.
(c) Sulphuric acid is a strong acid, ethanoic acid is a weak acid. Explain the difference between a strong acid and a weak acid.
\qquad
\qquad

3 There are three methods of preparing salts.
Method \mathbf{A} - use a burette and an indicator.
Method B - mix two solutions and obtain the salt by precipitation.
Method \mathbf{C} - add an excess of base or a metal to a dilute acid and remove the excess by filtration.

For each of the following salt preparations, choose one of the methods \mathbf{A}, \mathbf{B} or \mathbf{C}, name any additional reagent needed and then write or complete the equation.
(i) the soluble salt, zinc sulphate, from the insoluble base, zinc oxide
method
reagent
word equation
\qquad
\qquad
word equation
(ii) the soluble salt, potassium chloride, from the soluble base, potassium hydroxide

(iii) the insoluble salt, lead(II) iodide, from the soluble salt, lead(II) nitrate method
reagent
.............
equation $\mathrm{Pb}^{2+}+$
. \rightarrow

3 (a) Four bottles were known to contain aqueous ammonia, dilute hydrochloric acid, sodium hydroxide solution and vinegar, which is dilute ethanoic acid. The bottles had lost their labels. The pH values of the four solutions were 1, 4, 10 and 13.

Complete the table.

solution	pH
aqueous ammonia	
dilute hydrochloric acid	
sodium hydroxide solution	
vinegar	

[2]
(c) When nitric acid is added to water the following reaction occurs.

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NO}_{3}^{-}
$$

Give the name and the formula of the particle which is transferred from nitric acid to water.
name
formula
(d) This question is concerned with the following oxides.

aluminium oxide	$\mathrm{Al}_{2} \mathrm{O}_{3}$
calcium oxide	CaO
carbon dioxide	CO_{2}
carbon monoxide	CO
magnesium oxide	MgO
sulphur dioxide	SO_{2}

(i) Which of the above oxides will react with hydrochloric acid but not with aqueous sodium hydroxide?
...
[1]
(ii) Which of the above oxides will react with aqueous sodium hydroxide but not with hydrochloric acid?
(iii) Which of the above oxides will react both with hydrochloric acid and with aqueous sodium hydroxide?
(iv) Which of the above oxides will react neither with hydrochloric acid nor with aqueous sodium hydroxide?
\qquad
(c) Complete the following table by writing "reaction" or "no reaction" in the spaces provided.

oxide	type of oxide	reaction with acid	reaction with alkali
magnesium	basic
aluminium	amphoteric

4 The Carlsbad caverns in New Mexico are very large underground caves. Although the walls of these caves are coated with gypsum (hydrated calcium sulphate), the caves have been formed in limestone.
(a) It is believed that the caves were formed by sulphuric acid reacting with the limestone.
(i) Complete the word equation.

(ii) Describe how you could test the water entering the cave to show that it contained sulphate ions.
test \qquad
result
(iii) How could you show that the water entering the cave has a high concentration of hydrogen ions?
(b) To show that the polymer contains silver the following test was carried out.

The polymer fibres were chopped into small pieces and warmed with nitric acid. The silver atoms were oxidised to silver(I) ions. The mixture was filtered. Aqueous sodium chloride was added to the filtrate and a white precipitate formed.
(i) Why was the mixture filtered?
(ii) Explain why the change of silver atoms to silver ions is oxidation.
(iii) Give the name of the white precipitate.
\qquad
0620/s05/qp3

2 The following apparatus was used to measure the rate of the reaction between zinc and iodine.

The mass of the zinc plate was measured every minute until the reaction was complete.
(a) Write an ionic equation for the redox reaction that occurred between zinc atoms and iodine molecules.
(b) Describe how you could show by adding aqueous sodium hydroxide and aqueous ammonia that a solution contained zinc ions.
result with sodium hydroxide \qquad excess sodium hydroxide \qquad result with aqueous ammonia \qquad excess aqueous ammonia

4 (a) Insoluble compounds are made by precipitation.
(i) Complete the word equation for the preparation of zinc carbonate.

[2]
(ii) Complete the following symbol equation.

(iii) Write an ionic equation for the precipitation of the insoluble salt, silver(1) chloride.
(b) $2.0 \mathrm{~cm}^{3}$ portions of aqueous sodium hydroxide were added to $4.0 \mathrm{~cm}^{3}$ of aqueous iron(III) chloride. Both solutions had a concentration of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$. After each addition, the mixture was stirred, centrifuged and the height of the precipitate of iron(III) hydroxide was measured. The results are shown on the following graph.

(i) Complete the ionic equation for the reaction.
$\mathrm{Fe}^{3+}+\ldots . . \mathrm{OH}^{-} \rightarrow$
(ii) On the same grid, sketch the graph that would have been obtained if iron(II) chloride had been used instead of iron(III) chloride?
(iii) If aluminium chloride had been used instead of iron(III) chloride, the shape of the graph would be different. How are the shapes of these two graphs different and why?
difference in shape

\qquad
reason for difference \qquad
(b) About one third of this production of acid is used to make nitrogen and phosphoruscontaining fertilisers.
(i) Name the third element that is essential for plant growth and is present in most fertilisers.
(ii) Name a nitrogen-containing fertiliser that is manufactured from sulphuric acid.
(iii) Rock phosphate (calcium phosphate) is obtained by mining. It reacts with concentrated sulphuric acid to form the fertiliser, superphosphate. Predict the formula of each of these phosphates.

fertiliser calcium phosphate	ions calcium superphosphate	Ca^{2+} and $\mathrm{PO}_{4}{ }^{3-}$

(iv) The ionic equation for the reaction between the phosphate ion and sulphuric acid is shown below.
$\mathrm{PO}_{4}{ }^{3-}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+2 \mathrm{HSO}_{4}^{-}$
Explain why the phosphate ion is described as acting as a base in this reaction.
(d) Nitrogen dioxide, oxygen and water react to form dilute nitric acid.

Describe how lead(II) nitrate crystals could be prepared from dilute nitric acid and lead(II) oxide.
\qquad
\qquad
\qquad
(b) Describe the reactions, if any, of zinc and copper(II) ions with an excess of aqueous sodium hydroxide.
(i) zinc ions addition of aqueous sodium hydroxide \qquad
\qquad excess sodium hydroxide \qquad
\qquad
(ii) copper(II) ions
addition of aqueous sodium hydroxide \qquad
\qquad
excess sodium hydroxide \qquad

5 Methylamine $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is a weak base. Its properties are similar to those of ammonia.
(a) When methylamine is dissolved in water, the following equilibrium is set up.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{NH}_{2}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}} \stackrel{\text { acid }}{\text { base }} \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \\
& \hline
\end{aligned}
$$

(i) Suggest why the arrows are not the same length.
\qquad
(ii) Explain why water is stated to behave as an acid and methylamine as a base.
\qquad
(b) An aqueous solution of the strong base, sodium hydroxide, is pH 12 . Predict the pH of an aqueous solution of methylamine which has the same concentration. Give a reason for your choice of pH .
\qquad
\qquad
(c) Methylamine is a weak base like ammonia.
(i) Methylamine can neutralise acids.

$$
2 \mathrm{CH}_{3} \mathrm{NH}_{2}+\underset{2}{\mathrm{H}_{2} \mathrm{SO}_{4}} \rightarrow \underset{\text { methylammonium sulphate }}{\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4}}
$$

Write the equation for the reaction between methylamine and hydrochloric acid. Name the salt formed.

...
(ii) When aqueous methylamine is added to aqueous iron(II) sulphate, a green precipitate is formed. What would you see if iron(III) chloride solution had been used instead of iron(II) sulphate?
(iii) Suggest the name of a reagent that will displace methylamine from one of its salts s_{i} for example methylammonium sulphate.
(c) Calcium carbonate is used to control soil acidity.
(i) Why is it important to control soil acidity?
\qquad
(ii) Both calcium carbonate, insoluble in water, and calcium oxide, slightly soluble, are used to increase soil pH. Suggest two advantages of using calcium carbonate.
\qquad
\qquad
(iii) Give one use of calcium carbonate other than for making calcium oxide and controlling soil pH .
\qquad
(b) In the above method, a soluble salt was prepared by neutralising an acid with an insoluble base. Other salts have to be made by different methods.
(i) Give a brief description of how the soluble salt, rubidium sulphate could be made from the soluble base, rubidium hydroxide.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a method of making the insoluble salt, calcium fluoride.
\qquad

0620/w05/qp3
(b) Complete the word equations for the reactions of ethanoic acid.

(c) Write the symbol equation for the reaction between ethanoic acid and sodium hydroxide.
\qquad

2 The salt copper(II) sulphate can be prepared by reacting copper(II) oxide with sulphuric acid.

Complete the list of instructions for making copper(II) sulphate using six of the words below.
blue cool
dilute
filter
saturated sulphate white oxide

Instructions

1 Add excess copper(II) oxide to
 beaker and boil it.
 to remove the unreacted copper(II) oxide.

3 Heat the solution until it is \square

4 \square the solution to form \square
coloured crystals of copper (II) \square

5 Sulphur dioxide, SO_{2}, and sulphur trioxide, SO_{3}, are the two oxides of sulphur.
(a) Sulphur dioxide can kill bacteria and has bleaching properties. Give a use of sulphur dioxide that depends on each of these properties.
(i) ability to kill bacteria ..[1]
(ii) bleaching properties ...[1]

0620/w03/qp3
(c) Ammonia is a base.
(i) Name a particle that an ammonia molecule can accept from an acid.
\qquad
(ii) Write an equation for ammonia acting as a base.
\qquad
(d) Given aqueous solutions, $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$, of sodium hydroxide and ammonia, describe how you could show that ammonia is the weaker base.
\qquad
\qquad
(b) It has several oxides, three of which are shown below.

Manganese(II) oxide, which is basic.
Manganese(III) oxide, which is amphoteric.
Manganese(IV) oxide, which is acidic.
(i) Complete the word equation.
manganese(II) + hydrochloric \rightarrow \qquad $+$ \qquad oxide acid
(ii) Which, if any, of these oxides will react with sodium hydroxide?
\qquad
0620/w02/qp3
(b) There are three ways of making salts from sulphuric acid.
titration using a burette and indicator precipitation by mixing the solutions and filtering neutralisation of sulphuric acid using an excess of an insoluble base

Complete the following table of salt preparations.

method	reactant 1	reactant 2	salt
titration	sulphuric acid		sodium sulphate
neutralisation	sulphuric acid		zinc sulphate
precipitation	sulphuric acid		barium sulphate
	sulphuric acid	copper(II) oxide	copper(II) sulphate

(c) The results of an investigation into the action of heat on copper(II) sulphate-5-water, a blue crystalline solid, are given below.

The formula is $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and the mass of one mole is 250 g
A 5.0 g sample of the blue crystals is heated to form 3.2 g of a white powder. With further heating this decomposes ỉnto a black powder and sulphur trioxide.
(i) Name the white powder.
\qquad
(ii) What is observed when water is added to the white powder?
\qquad
(iii) Name the black powder.
(iv) Calculate the mass of the black powder. Show your working.
\qquad
\qquad
\qquad

8 Methanoic acid is the first member of the homologous series of carboxylic acids.
(a) Give two general characteristics of a homologous series.
\qquad
\qquad
\qquad
(b) In some areas when water is boiled, the inside of kettles become coated with a layer of calcium carbonate. This can be removed by adding methanoic acid.
(i) Complete the equation.

(ii) Methanoic acid reacts with most metals above hydrogen in the reactivity series. Complete the word equation.
zinc + methanoic acid \rightarrow \qquad $+$
(iii) Aluminium is also above hydrogen in the reactivity series. Why does methanoic acid not react with an aluminium kettle?
\qquad
\qquad
(c) Give the name, molecular formula and empirical formula of the fourth acid in this series. name
\qquad
molecular formula
\qquad
[Total: 10]
0620/s10/qp31

7 The soluble salt hydrated lithium sulfate is made by titration from the soluble base lithium hydroxide.

(a) The sulfuric acid is added slowly from the burette until the indicator just changes colour. The volume of sulfuric acid needed to just neutralise the lithium hydroxide is noted. Describe how you would continue the experiment to obtain pure dry crystals of hydrated lithium sulfate.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0620/s14/qp32

(c) Scandium oxide is insoluble in water. Describe how you could show that it is an amphoteric oxide.
\qquad
\qquad
\qquad
\qquad
0620/s14/qp32
(c) Complete the following equations for some of the reactions of propanoic acid. The salts of this acid are called propanoates.
(i) zỉnc + propanoic acild \rightarrow \qquad
\qquad + hydrogen
(ii) calcium + propanoic \rightarrow \qquad $+$ \qquad oxide acid
(iii) $\mathrm{LiOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow$ \qquad $+$ \qquad
(ii) Fertilisers contain nitrogen. Name the other two elements essential for plant growth commonly found in fertilisers.
\qquad
(b) Crops do not grow well if the soil is too acidic.
(i) One cause of acidity in soil is acid rain. Explain how acid rain is formed.
\qquad
\qquad
\qquad
\qquad
(ii) Name two bases which are used to increase the pH of acidic soils.
\qquad
(b) (i) Suggest why a solution of malonic acid, concentration $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$, has a higher pH than one of sulfuric acid of the same concentration.
\qquad
(ii) Describe a test, other than measuring pH , which can be carried out on both acid solutions to confirm the explanation given in (b)(i) for the different pH values of the two acids.
\qquad
\qquad
(c) Complete the following equations for reactions of these two acids.
(i) sodium hydroxide + malonic acid \rightarrow \qquad $+$
(ii) $\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ $+$
(iii) $\mathrm{Mg}+\mathrm{CH}_{2}(\mathrm{COOH})_{2} \rightarrow$ \qquad
(iv) $\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $+$ [2]

3 Fertilisers are used to promote plant growth.
Two fertilisers are ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$, and calcium dihydrogenphosphate, $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
(a) Describe a test to distinguish between these two fertilisers.
test \qquad
\qquad
result \qquad
\qquad
(b) Many fertilisers are manufactured from ammonia. Describe how ammonia is made in the Haber process. Give the essential conditions and an equation for the process.
\qquad
\qquad
\qquad
(c) State the essential plant nutrient not supplied by ammonium phosphate.
\qquad
(d) The soluble compound, calcium dihydrogenphosphate is made by heating the insoluble mineral rock phosphate, $\mathrm{Ca}_{4}\left(\mathrm{PO}_{4}\right)_{2}$ with sulfuric acid.
(i) Why would rock phosphate not be effective as a fertiliser?
\qquad
(ii) The phosphate ion, PO_{4}^{3-}, from the rock phosphate is changed into the dihydrogenphosphate ion, $\mathrm{H}_{2} \mathrm{PO}_{4}$ -

$$
\mathrm{PO}_{4}^{3-}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+2 \mathrm{HSO}_{4}^{-}
$$

What type of reagent is the phosphate ion? Give a reason for your choice.
\qquad
(e) The extensive use of fertilisers and possibly the effect of acid rain tend to increase the acidity of the soil. State why it is necessary to control soil acidity and explain how this can be done.
\qquad
\qquad

6 Soluble salts can be made by the neutralisation of an acid by a base. Insoluble salts can be made by precipitation.
(a) The following is a brief description of the preparation of the soluble salt, nickel(II) chloride-6-water, from the insoluble base nickel(II) carbonate.

Nickel(II) carbonate is added in small amounts to hot dilute hydrochloric acid until it is in excess. The mixture is filtered. The filtrate is partially evaporated and then allowed to cool until crystals of nickel(II) chloride-6-water form.
(i) Why is it necessary to use excess carbonate?
\qquad
\qquad
(ii) Explain why it is necessary to filter.
\qquad
(iii) Why partially evaporate rather than evaporate to dryness?
\qquad
\qquad
(iv) What additional steps are needed to obtaîn dry crystals?
\qquad

(b) Potassium chloride can be made from hydrochloric acid and potassium carbonate.
(i) Why must a different experimental method be used for this preparation?
\qquad
(ii) Give a description of the different method used for this salt preparation.
\qquad
\qquad
\qquad
\qquad
(b) Antimony oxide is a white powder which is insoluble in water. Describe how you would find out if it is a basic, an acidic or an amphoteric oxide.
\qquad
\qquad
\qquad
\qquad

1 This question is concerned with the following oxides.

> sulfur dioxide
> carbon monoxide
> lithium oxide
> aluminium oxide
> nitrogen dioxide
> strontium oxide
(a) (i) Which of the above oxides will react with hydrochloric acid but not with aqueous sodium hydroxide?
\qquad
(ii) Which of the above oxides will react with aqueous sodium hydroxide but not with hydrochloric acid?
\qquad
(iii) Which of the above oxides will react with both hydrochloric acid and aqueous sodium hydroxide?
\qquad
(iv) Which of the above oxides will not react with hydrochloric acid or with aqueous sodium hydroxide?

(b) Two of the oxides are responsible for acid rain. Identify the two oxides and explain their presence in the atmosphere.
\qquad
\qquad
\qquad
\qquad
\qquad

8 Soluble salts can be made using a base and an acid.
(a) Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride-6-water from the insoluble base cobalt(II) carbonate.

Step 1
Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.
Step 2
\qquad
\qquad
Step 3
\qquad
\qquad
Step 4
\qquad
\qquad
(b) Beryllium hydroxide, a white solid, is an amphoteric hydroxide.
(i) Name another metal which has an amphoteric hydroxide.
\qquad
(ii) Suggest what you would observe when an excess of aqueous sodium hydroxide is added gradually to aqueous beryllium sulfate.
\qquad
(c) (i) Define the term acid.
\qquad
(ii) Sulfuric acid is a strong acid. Ethanedioic acid is a weak acid. Given solutions of both acids, how could you show that sulfuric acid is a strong acid and ethanedioic acid is a weak acid?
method \qquad
\qquad
result for each acid \qquad
\qquad
(ii) Carbon dioxide ìs acidic and methane is neutral. Suggest another way of measuring the volume of methane in the sample.
\qquad
\qquad
0620/w10/qp32
(c) Two of the oxidation states of vanadium are +3 and +4 .
(i) Write the formula of vanadium(III) oxide and of vanadium(IV) oxide.
vanadium(III) oxide
vanadium(IV) oxide
(ii) Vanadium(III) oxide is basic and vandium(IV) oxide is amphoteric.

Describe how you would obtain a sample of vanadium(III) oxide from a mixture of these two oxides.
\qquad
\qquad
\qquad
0620/w10/qp33

2 Oxides are classified as acidic, basic, neutral and amphoteric.
(a) Complete the table.

type of oxide	pH of solution of oxide	example
acidic		
basic		
neutral		

(b) (i) Explain the term amphoteric.
\qquad
\qquad
(ii) Name two reagents that are needed to show that an oxide is amphoteric.
\qquad

4 Across the world, food safety agencies are investigating the presence of minute traces of the toxic hydrocarbon, benzene, in soft drinks. It is formed by the reduction of sodium benzoate by vitamin C.

(a) Sodium benzoate is a salt, it has the formula $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$. It can be made by the neutralisation of benzoic acid by sodium hydroxide.
(i) Deduce the formula of benzoic acid.
\qquad
(ii) Write a word equation for the reaction between benzoic acid and sodium hydroxide.
(iii) Name two other compounds that would react with benzoic acid to form sodium benzoate.

Fahad H. Ahmad (+92 323509 4443)

Page2	Page3	Page4	Page5	Page6	Page7	Page8	Page9	Page10	Page11
32a	19b	20a	30c	18d	31a	18d	32c	34d	32b
21c	32b	19b	20d	35b	20a	34a	17c	33c	27a
20c	22b	31a			19a	33b	16c		
	21b								

Page12	Page13	Page14	Page15	Page16	Page17	Page18	Page19	Page20	Page21
18d	13b	20c	19b	20b	19c	21d	2c	20b	22d
19d	34d	$17 b$	35b	21c	36d	16d	37c	21d	23a
17c		$18 a$	22d		20a				
16b									

Page22	Page23	Page24	Page25	Page26	Page27	Page28	Page29	Page30	Page31
3b	$12 c$	$20 b$	$35 b$	$19 a$	32d	20c	35d	21d	19d
15a	$34 a$	$17 c$	$22 c$	$20 c$	$23 a$	$21 b$	$36 a$	22d	15c
16b	$19 b$	$18 b$		$36 a$	$22 a$			23a	
							$20 c$		

Page32	Page33	Page34	Page35	Page36	Page37	Page38	Page39	Page40	Page41
36b	35b	18a	20c	33a	31c	16d	12a	20d	22a
34a	21d	19c		34d	19c	17b	34a	21c	
	22c						19d		

Page42	Page43	Page44	Page45	Page46	Page47	Page48	Page49	Page50	Page51
34b	30c	19a	$35 b$	$33 a$	$16 c$	21c	19a	21d	19b
	21c	20a	$34 a$	$20 c$	$34 c$	22d	18c	17c	33b
		9a		21c			$16 b$	18d	

Page52	Page53	Page54	Page55	Page56	Page57	Page58	Page59	Page60	Page61
31c	20b	7 a	29a	21c	20c	19c	33a	9b	19b
19d	16b	34b	19d	33a	21d	15d	20d	32b	17a
			20a			35a	21d	20d	32c
							19c		

Page62	Page63	Page64	Page65	Page66	Page67
21a	9d	18a	20c	16c	17d
22a	33a	33c	21d	33a	18c
20b	19c	19c		30c	

19d

PAGE 68

8 (a) (changes from) blue (1) to pink (1) [2]
(b) no more (solid) dissolves or no more cobalt(II) carbonate dissolves or no more effervescence or bubbling or fizzing [1] filter (residue)/centrifuge/decant [1] evaporate/heat/warm/boil/leave in sun AND until most of the water has gone/some water is left/until it is concentrated/saturation
(point)/crystallisation
point/crystals form on glass rod or microscope slide/crystals start to form [1]
Leave/allow to cool/allow to crystallise/filter (off
crystals)/wash(with distilled water)/dry crystals with filter paper/dry crystals in warm place or dry in oven or dry on windowsill [1]

PAGE 69

6 (a) Rb loses 1 electron/1 electron in outer shell/1 valency or valence electron [1]
Sr loses 2 electrons/2 electrons in outer shell/2 valency or valence electrons [1]
(b) (i) (mix solutions of) rubidium carbonate $/ \mathrm{Rb}_{2} \mathrm{CO}_{3}[1]$
strontium chloride/ SrCl_{2} or strontium nitrate/ $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ or strontium sulfate/SrSO4 or strontium hydroxide/Sr (OH) 2 [1]
COND (on two correct reactants) filter or centrifuge or decant (the residue) [1] wash with water and dry/press between filter paper/put in (low) oven/put on a (sunny) windowsill/put in sun/heat [1]
(c) (i) nitric acid or nitric(V) acid or HNO_{3} [1]
(ii) $2 \mathrm{KNO}_{3}=2 \mathrm{KNO}_{2}+\mathrm{O}_{2}[2]$

Species (1)
Balance (1)

PAGE 70

1 (a) Match the following pH values to the solutions given below.
1371013
The solutions all have the same concentration.
solution pH
aqueous ammonia, weak base 10
dilute hydrochloric acid, a strong acid 1
aqueous sodium hydroxide, a strong base 13
aqueous sodium chloride, a salt 7
dilute ethanoic acid, a weak acid 3 [5]
(b) Hydrochloric acid strong acid or ethanoic acid weak acid [1]
OR: hydrochloric acid completely ionised or ethanoic acid
partially ionised
hydrochloric acid greater concentration of/more H_{+}ions (than ethanoic acid) [1]
(c) Rate of reaction with $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Zn}, \mathrm{Fe}$ [1]
Strong (hydrochloric) acid bubbles faster or more bubbles or dissolves faster [1]
OR: rate of reaction with (metal)
carbonate [1]
strong (hydrochloric) acid faster or more bubbles or dissolves faster (only if carbonate insoluble) [1]
OR: electrical conductivity [1]
strong (hydrochloric) acid better conductor [1]
[Total: 9]

PAGE 71

(b) $\mathrm{Ba}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3}\right)_{2} /\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3}\right)_{2} \mathrm{Ba}$ [1] (c) (i) _ magnesium hexanesulfonate + hydrogen [1]
(ii) _ calcium hexanesulfonate + water [1]
(iii) $2 \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3} \mathrm{H}+\mathrm{Na}_{2} \mathrm{CO}_{3}{ }_{-} 2 \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3} \mathrm{Na}+$ $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3} \mathrm{Na}=(1)$ [1]
remaining species correct and equation
balanced $=(1)$ [1]
(d) (i) measure $\mathrm{pH} /$ add universal indicator [1] both acids have a low value / $\mathrm{pH} 0-2$ / same colour / red [1]
or
measure rate with named reactive metal, Mg , Zn (1)
both fast reactions (1)
or
measure rate using piece of insoluble carbonate, CaCO_{3} (1)
both fast reactions (1)
NOTE: must be insoluble for first mark or
measure electrical conductivity (1)
both good conductors (1)
(ii) to have same concentration of H_{+}/ one acid is $\mathrm{H}_{2} \mathrm{SO}_{4}$, the other is $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{SO}_{3} \mathrm{H}$ / sulfuric acid is dibasic, hexanesulfonic is monobasic [1]
(iii) a strong acid is completely ionised, [1] a weak acid is partially ionised [1]

PAGE 72

(c)
if the oxide is

	predicted result with hydrochloric adid	predicted result with aqueous aqueous sodium hydroxide
acidic	NR	R
neutral	NR	NR
basic	R	NR
amphoteric	R	R
(1). per line		

5 (a) because they have more than one oxidation state or valency / form ions with different charges [1]
there are two iron oxides (iron(III) oxide and iron(II) oxide) / iron forms Fe_{2+} and Fe_{3+} compounds / iron forms iron(II) and iron(III) compounds [1]
(b) (i) to remove the precipitate / remove the silver(I) chromate(VI) / remove the residue [1]
(ii) to remove soluble impurities / remove named soluble salt e.g. potassium nitrate / remove
reactants [1]
(iii) to dry solid / to remove water [1]
(c) (i) need one mole of potassium
chromate(VI) for two moles of silver(I) nitrate / correct
references to mole ratio [1]

PAGE 73

(b) (i) anhydrous cobalt chloride becomes
hydrated [1]
ACCEPT: hydrous
(ii) carbon dioxide is acidic [1]
sodium hydroxide and calcium oxide are bases
/ alkalis [1]
(iii) Any two of:
water, calcium carbonate and sodium carbonate [2]
ACCEPT: sodium bicarbonate

PAGE 74

(b) (i) heat with carbon or coke or carbon
monoxide; [1]
(ii) $\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}$ [2]
[1] for correct reactants [1]for correct products
(iii) zinc (not: ions) more reactive than silver and lead; [1]
zinc displaces both metals / silver and lead produced / ions become atoms / zinc reduces silver ions and lead ions; [1] (silver and lead) can be removed by filtering / centrifugation / decanting; [1]
an ionic equation; i.e.
$\mathrm{Zn}+2 \mathrm{Ag}_{+} \mathrm{Zn}_{2+}+2 \mathrm{Ag}$ or $\mathrm{Zn}+\mathrm{Pb}_{2+} \mathrm{Zn}_{2++}$ Pb [1]
allow: any two correct half equations

PAGE 75

(b) (i) strontium carbonate does not dissolve / no effervescence; [1]
note: not just reaction is complete
(ii) to remove excess / unreacted /
undissolved strontium carbonate; [1]
(iii) water of crystallisation needed / 6 H 20 in crystals / would get anhydrous salt / would not get hydrated salt / crystals dehydrate; [1]
not: just to obtain crystals

PAGE 76

(b) (i) strontium carbonate does not dissolve / no effervescence; [1] note: not just reaction is complete (ii) to remove excess / unreacted / undissolved strontium carbonate; [1]
(iii) water of crystallisation needed / 6 $\mathrm{H}_{2} 0$ in crystals / would get anhydrous salt / would not get hydrated salt / crystals dehydrate; [1]
not: just to obtain crystals

PAGE 77

7 (a) (i) add carbon / animal charcoal [1] filter [1]
OR
repeat experiment without indicator [1] using same quantity / volume of acid [1]
(ii) add magnesium metal / carbonate / oxide / hydroxide
to (hot) (hydrochloric) acid [1]
cond: until in excess or no more dissolves or reacts [1]
cond: filter (to remove unreacted solid) [1]

PAGE 78

6 (a) (i) proton or H_{+}acceptor [1]
(ii) (measure) pH or (use) UI indicator [1]
note: can be implied need not be explicit
sodium hydroxide has higher pH /
ammonia(aq) has lower pH [1]
(this sentence would score 2 marks)
or
appropriate colours with UI / appropriate numerical values [1]
ammonia is closer to green, blue-green, turquoise or lighter blue
sodium hydroxide is darker blue / purple /
violet [1]
or
measure electrical conductivity [1]
can be implied need not be explicit ammonia (aq) is the poorer conductor/ sodium hydroxide is the better conductor [1]
(e) (i) pH increases [1]
(ii) oxygen needed for rusting / removes
oxygen / reacts with oxygen [1]
(b) experiment $1 \mathrm{Ca}_{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

PAGE 79

(e) it would react with/dissolves in a named strong acid [1]
it would react with/dissolves in a named alkali [1]
it shows both basic and acid properties $=1$ [1] it reacts with both acids and bases/alkalis =1 [1] [max 2]

2 (a) nitric acid; [1]
sodium hydroxide / carbonate / hydrogen carbonate; [1]
copper (II) oxide / hydroxide / carbonate; [1]
any named soluble chloride; [1]
accept: hydrochloric acid / hydrogen chloride
silver (I) nitrate / ethanoate / sulfate; [1]
must be soluble silver salt not silver oxide / carbonate
zinc (II) sulfate [1]
(b) (i) $\mathrm{Ag}_{+}(\mathrm{aq})+\mathrm{Cl}$
$-(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})[2]$
equation correct state symbols missing [1]
(ii) $\mathrm{ZnCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ [2]
correct formula for zinc sulfate $=1$
[Total: 10]

PAGE 80

(b) (i) $\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{HCl}+\mathrm{H}_{3} \mathrm{PO}_{3}[1]$
(ii) acid solutions same concentration [1] measure $\mathrm{pH} / \mathrm{pH}$ paper/Universal indicator [1] hydrochloric acid lower pH [1]
colours of Universal indicator can be given as red<orange<yellow
ignore precise pH values as long as HCl is lower than $\mathrm{H}_{3} \mathrm{PO}_{3}$
OR Acid solutions same concentration [1] add magnesium or any named metal above Hydrogen in reactivity series but not above magnesium
calcium carbonate or any insoluble carbonate [1]
hydrochloric acid react faster/shorter time [1]
OR acid solutions same concentration [1] measure electrical conductivity [1] hydrochloric acid better conductor/bulb brighter [1]
OR acid solutions same concentration [1] add sodium thiosulphate [1]
hydrochloric acid forms precipitate faster/less time [1]
(iii) sodium hydroxide/sodium carbonate [1] titration cond on correct reagent [1] second mark scores for mention of titration /burette/pipette/indicator.
experimental detail not required
any named soluble calcium salt e.g. calcium
chloride/nitrate/hydroxide [1]
precipitation/filter/decant/centrifuge [1]

PAGE 81

5 (a) (i) $2 \mathrm{Li}+2 \mathrm{HI} \rightarrow 2 \mathrm{Lil}+\mathrm{H}_{2}[1]$
(ii) zinc carbonate + hydriodic acid \rightarrow zinc
iodide + carbon dioxide + water [1]
(iii) $\mathrm{MgO}+2 \mathrm{HI} \rightarrow \mathrm{MgI}_{2}+\mathrm{H}_{2} \mathrm{O}$ [1]
(b) reaction 1 is redox / Li/2 HI reaction [1]
cond reason either oxidation number/state / electron transfer [1]
(d) (i) the reaction is exothermic / reaction produces heat/energy [1]
all the sodium hydroxide used up/neutralised / reaction has stopped [1]
(ii) adding colder acid / no more heat produced [1]
if not given in (d)(i) any comments such as "reaction has stopped" can gain mark
(iii) 1.33 / 1.3 / $1.3333\left(\mathrm{~mol} / \mathrm{dm}_{3}\right)$ scores both marks [2]
not 1.34
for a correct method $-\mathrm{M}_{1} \mathrm{~V}_{1}$ / moles of NaOH $=0.02$
with an incorrect answer only [1]

PAGE 82

(c) base [1]
not alkali
accepts a proton [2]
accepts hydrogen ion / H_{+}only [1]
proton and H_{+}[2]

PAGE 83

(d) (i) thalium sulfate + ammonia + water [1]
(ii) $2 \mathrm{TlOH}+\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Tl}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ [2] not balanced = [1]
incorrect formula $=[0]$
(iii) green precipitate or solid (ignore shades of green but not bluey green etc.) [1]
$\mathrm{Fe}_{2+}+2 \mathrm{OH}_{-} \mathrm{Fe}(\mathrm{OH})_{2}$ accept multiples [1]

PAGE 84

6 (a) (i) $\mathrm{Tl}_{2} \mathrm{~S}$ [1]
(ii) $\mathrm{TlCl}_{3}[1]$
(b) filter / centrifuge / decant
wash the precipitate
dry the solid / heat the solid (in oven) / press between filter paper [3]
all three stated but not in correct order $=[2]$ two out of three stated in any order = [1]
(c) (i) silver chloride / silver bromide [1]
photography / cameras / films / photo chromic lenses / sunglasses [1]
(ii) increase distance between lamp and paper or put lamp far away /
put a screen or translucent or semi-opaque material between them /
use a less powerful or low voltage or dim lamp /
lower the temperature
any two [2]

PAGE 85

(b) (i) because it accepts a proton [2] accepts hydrogen ion or H_{+}ONLY [1] proton and H_{+}[2]
(ii) hydrogen chloride is a strong acid [1] hydrogen fluoride is a weak acid [1] weaker or stronger correctly applied for [2]
(iii) hydrogen chloride (aqueous) would have lower pH [1]
OR hydrogen fluoride (aqueous) would have higher pH
If values suggested, not over 7
[Total: 8]

PAGE 86

5 (a) (i) $\mathrm{Ca}_{2+}+2 \mathrm{~F}_{-} \rightarrow \mathrm{CaF}_{2}$ [2]
Not balanced ONLY [1]
Both species must be correct for first mark.
Second mark is for correct balancing.
(ii) Mole ratio $\mathrm{Ca}_{2}+$: F_{-}is $1: 2$ [1]

Answer must mention moles
accept argument based on charges or number of ions
accept 2 moles of NaF react with 1 mole of CaCl_{2}
NOT just " 2 " in equation
If fluorine must specify atoms or ions
(iii) to remove traces of solutions or to remove soluble
impurities or to remove a named salt sodium chloride
or sodium fluoride or calcium chloride [1]
To remove impurities is not enough
(iv) to dry (precipitate) or to remove water or to evaporate water [1]
NOT to evaporate some of water NOT to crystallise salt
(b) $\mathrm{T}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ allow correct example [1]
explain why 8 cm 3 react fully [1]
comment about mole ratio [1]
[Total: 8]

PAGE 88

7 (a) repeat experiment without indicator or use carbon to remove indicator [1] (partially) evaporate or boil or heat [1] allow to cool or crystallise or crystals [1] dry crystals [1]
MUST be in correct order

NB evaporate to dryness, marks one and two ONLY

PAGE 89

(c) hydrogen chloride or hydrochloric acid [1] carbon dioxide or carbonic acid or hydrogen carbonate [1]
(d) 8 e around both chlorine atoms [1]

4 e between carbon and oxygen atoms [1]
8 e around carbon atom [1]
8 e around oxygen [1]
if a bond contains a line with no electrons, no marks for atoms joined by that line ignore keying

PAGE 90

4 (a) (i) magnesium + sulphuric acid $=$ magnesium sulphate + hydrogen [1]
ACCEPT hydrogen sulphate
(ii) $\mathrm{Li}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{Li}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$ [2]
formulae correct but not balanced [1]
(iii) $\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}[2]$
$\mathrm{ORCuO}+2 \mathrm{HCl}_{-} \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR} \mathrm{CuO}+2 \mathrm{HNO}_{3}-\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
formulae correct but not balanced [1]
(iv) sodium carbonate + sulphuric acid
sodium sulphate + carbon dioxide + water [1]
(b) it accepts a proton [2]
it accepts a hydrogen ion [1] ONLY
(c) sulphuric acid is completely ionised [1]
or few molecules and many ions
ethanoic acid is partially ionised [1]
or many molecules and few ions
[Total: 10]

PAGE 91

3 (i) method C [1]
sulphuric acid (allow if given in equation) [1] zinc oxide + sulphuric acid $=$ zinc sulphate + water [1]
(ii) method A [1]
hydrochloric acid [1]
$\mathrm{KOH}+\mathrm{HCl}=\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$ [1]
(iii) method B [1]
potassium iodide or any soluble iodide [1]
$\mathrm{Pb}_{2+}+2 \mathrm{l}$ - Pbl_{2} accept a correct equation even
if soluble iodide is wrong [2]
Not balanced - $\mathrm{Pb}_{2+}+\mathrm{I}-=\mathrm{Pbl}_{2}$ ONLY [1]
[Total: 10]

PAGE 92

3 (a) ammonia 10
hydrochloric acid 1
sodium hydroxide 13
ethanoic acid 4
All correct [2]
Two correct [1]
(b) With strong acid bulb brighter [1]
faster rate of bubbles [1]
OR corresponding comments for weak acid
(c) proton NOT hydrogen ion [1]
H_{+}not conditional on proton [1]
Only way for [2] is proton and H_{+}
(d) (i) CaO and MgO [1]
(ii) CO_{2} and SO_{2} [1]
(iii) $\mathrm{Al}_{2} \mathrm{O}_{3}$ [1]
(iv) CO [1]
[TOTAL = 10]
(c) reaction no reaction [1]
reaction reaction [1]

PAGE 94

4 (a) (i) correct word equation (carbon dioxide and water) [1]
Accept correct symbol equation
(ii) Must have a correct reagent otherwise wc = 0
add (acidified) barium chloride(aq) or nitrate or add barium ions [1]
COND white precipitate [1]
NOT lead(II) compounds
(iii) low pH or universal indicator turns red(aq)
[1]
pH 3 or less
(b) (i) to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate [1]
(ii) because silver atoms have lost electrons [1]

OR oxidation number increased
(iii) silver chloride [1]

PAGE 95

2 (a) $\mathrm{Zn}+\mathrm{I}_{2}=\mathrm{Zn}_{2+}+2 \mathrm{l}$-[2]
For having either reactants or products correct
ONLY [1]
(b) for zinc and sodium hydroxide white precipitate [1]
dissolves in excess (only if precipitate mentioned) [1]
for zinc and ammonia same results [1] Mark either first (sodium hydroxide or aqueous ammonia), if completely correct, then an additional [1] can be awarded for stating that the other has the same results.

4 (a) (i) Named soluble zinc salt [1]
corresponding sodium salt [1]
If hydroxide or oxide then $0 / 2$
(ii) Correct equation [2]
not balanced [1] only
(iii) Correct equation [2]
(b) (i) $\mathrm{Fe}_{+}+30 \mathrm{H}=\mathrm{Fe}(0 \mathrm{H})_{3}[1]$
(ii) Max at 8 cm 3
[1]
Same shape of graph

Just the above shape, the height of the precipitate and the volume of sodium hydroxide are irrelevant [1]
(iii) Maximum then height of precipitate decreases [1]
or graph slopes down to x axis or comes to zero hydroxide dissolves in excess or it is amphoteric [1]

PAGE 97

(b) (i) potassium [1]
(ii) ammonium sulphate [1]
(iii) $\mathrm{Caz}\left(\mathrm{PO}_{4}\right)_{2}[1]$
$\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}[1]$
(iv) only acceptable responses are:
accepts a proton [2]
accepts H_{+}
[1] only

PAGE 98

(d) Add excess lead oxide to nitric acid can imply excess
filter NOT if residue is lead nitrate evaporate or heat solution
(b) (i) white precipitate

COND upon a precipitate
dissolves in excess or forms solution [1]
[1]
(ii) blue precipitate

COND upon a precipitate
does not dissolve in excess [1]

PAGE 99

5 (a) (i) equilibrium to left or many molecules and few ions or
partially ionised or reverse reaction favoured [1]
(ii) Water donates proton [1] methylamine accepts a proton [1]
NOTE If hydrogen ion then ONLY [1] provided both are correct
(b) less than 12 more than 7 [1]
smaller concentration of hydroxide ions or partially dissociated or
poor proton acceptor or poor H_{+}acceptor [1]
NOT it is a weak base
(c) (i) $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HCl}=\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ [1]
methylammonium chloride [1]
NOTE the equation must be as written, the equation with sulphuric acid has been given as guidance.
(ii) brown precipitate [1]

ACCEPT orange or red/brown or brick red or brown/red
(iii) sodium hydroxide or any named strong base [1]
[Total: 9]

PAGE 100

(c) (i) Any reasonable explanation

Plants prefer soil pH about 7
Plants do not grow (well) in acidic soils/plants grow better
To increase crop yields
Any ONE [1]
Do NOT accept in acidic soils plants die
(ii) With calcium carbonate, pH cannot go above 7
[1]
It is not washed away by the rain/remains longer in the soil
It is not absorbed by the plant [1]
OR
With calcium oxide, pH can go above 7 [1]
It is washed away by the rain [1]
(iii) Any correct use - making steel/iron, making cement, making glass, [1]
disposing of acid wastes, removing sulphur dioxide from flue
gases, (stone in) building, indigestion tablets, toothpaste, cosmetics etc
(b)(i) sulphuric acid

COND description of titration
repeat without indicator or with carbon
evaporation
any TWO [3]
(ii) suitable reactants calcium chloride and sodium fluoride [1]
COND upon correct reagents
filter [1]
wash and dry precipitate [1]
OR Accept synthesis
calcium [1]
fluorine [1]
burn or heat [1] [3]

PAGE 101

(b)(i) calcium ethanoate + hydrogen [1]
(ii) zinc oxide or hydroxide [1]
(c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}{ }^{\varrho} \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ [2]
reactants [1] products [1]

2 dilute

filter
saturated
cool
blue
sulphate [6]

PAGE 102

5 (a) (i) preserve food or sterilising
(ii) making paper
(c) (i) proton
hydrogen ion or H^{+}ONLY [1]
(ii) correct equation molecular or ionic
$\mathrm{NH}_{3}+\mathrm{HCl}=\mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{NH}_{3}+\mathrm{H}^{+}=\mathrm{NH}_{4}^{+} \operatorname{accept} \mathrm{NH}_{4} \mathrm{OH}$
(d) measure pH or add universal indicator or pH meter ammonia has lower pH if numerical values given

```
(b) (i) manganese chloride
water
(ii) manganese(III) and (IV) oxides
```

PAGE 103
(b) sodium hydroxide or carbonate or hydrogencarbonate
zinc oxide or hydroxide or carbonate
NOT zinc
barium nitrate or chloride or hydroxide or barium ions
neutralisation NOT acid/base
(c) (i) copper sulphate or anhydrous copper sulphate accept "unhydrated"
NOT formula
(ii) goes blue or becomes hot or steam
(iii) copper oxide

PAGE 104

8 (a) same general formula
same chemical properties
same functional group
physical properties vary in predictable way
common methods of preparation
consecutive members differ by CH_{2}
any two [2]
mark first two
ignore others unless it contradicts a point
which has been awarded a mark
(b) (i) $2 \mathrm{HCOOH}+\mathrm{CaCO}_{3} _\mathrm{Ca}(\mathrm{HCOO})_{2}+\mathrm{CO}_{2}$
$+\mathrm{H}_{2} \mathrm{O}$ [2]
not balanced = [1]
(ii) zinc + methanoic acid _ zinc methanoate + hydrogen [2]
[1] for each product
(iii) protected by oxide layer [1]
(c) butanoic acid [1]
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH} / \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH} /$
$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{OOH}$ [1]
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ [1]
mark ecf to molecular formula

PAGE 105

7 (a) repeat without indicator / repeat using same volumes of acid and alkali or use
carbon / charcoal to remove indicator (1) evaporate / heat / warm / boil / leave in sun (1)
until most of the water has gone / some
water is left / saturation (point) /
crystallisation point (1)
leave / allow to cool / allow to
crystallise (1)
filter (off crystals) / wash(with
distilled water) / dry crystals with filter paper / dry
crystals in warm place / oven / windowsill (1) [5]
(c) name or formula of strong acid and alkali (1)
reacts with or neutralises both acid and base or alkali (then amphoteric) (1)
it dissolves / soluble in both (acid and alkali) or form solutions in both (1) [3]

PAGE 106

(c) (i) zinc + propanoic acid \rightarrow zinc propanoate (+ hydrogen) (1) [1]
(ii) calcium oxide + propanoic acid \rightarrow calcium propanoate + water (1) [1]
(iii) $\mathrm{LiOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOLi}+\mathrm{H}_{2} \mathrm{O}$ (1) $[1]$
(ii) potassium / K (1)
phosphorus / P (1) [2]
(b) (i) burn fossil fuels / burn fuels containing sulfur / burn compounds containing
sulfur / burn ores containing sulfur /
roast metal sulfides / burn metal
sulfides
(1)
sulfur dioxide / SO_{2} (formed) (1)
(form) sulfuric / $\mathrm{H}_{2} \mathrm{SO}_{4} /$ sulfurous acid /
$\mathrm{H}_{2} \mathrm{SO}_{3}$ (1)
OR
nitrogen and oxygen (in air) react at
high temperatures / in jet engines / car engines / lightning. (1)
(form) oxides of nitrogen (1)
(form) nitric acid / $\mathrm{HNO}_{3} /$ nitrous acid / HNO_{2} (1) [3]

PAGE 107

(b) (i) malonic is a weaker acid/less
dissociated
OR sulfuric acid is a stronger acid/more dissociated [1]
NOT sulfuric acid is a strong acid
(ii) add piece of suitable metal, e.g. Mg

ALLOW Al, Ca NOT K, Na, Cu [1]
sulfuric acid reacts faster OR malonic reacts slower [1]
OR
as above add a piece of CaCO_{3}, if soluble carbonate then [1] only
OR measure electrical conductivity [1]
sulfuric acid is the better conductor
OR malonic acid poorer conductor [1]
NOT sulfuric acid is a good conductor
(c) (i) sodium malonate and water [1]
(ii) CuSO_{4}
$\mathrm{H}_{2} \mathrm{O}$ [2]
(iii) $\mathrm{CH}_{2}(\mathrm{COO})_{2} \mathrm{Mg}$
H_{2} [2]
(iv) $\mathrm{K}_{2} \mathrm{SO}_{4}$
CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ NOT $\mathrm{H}_{2} \mathrm{CO}_{3}$ [2]

PAGE 108

3 (a) sodium hydroxide solution [1]
warm [1]
(only) ammonium phosphate gives off
ammonia / gas (which will turn red litmus
paper
blue) [1]
or:
sodium hydroxide solution [1]
dissolve fertiliser in water [1]
Ca2+ gives (white) ppt [1]
or:
flame test [1]
Ca2+ brick red / orange / orange-red [1]
NH_{4}

+ no colour [1]
(b) iron catalyst [1]
pressure 150-300 atmospheres [1]
temperature $370-470{ }^{\circ} \mathrm{C}$ [1]
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}[1]$
note: units required for temperature and pressure
(c) potassium / K [1]
(d) (i) needs to be soluble / in solution
(to be absorbed by plants) [1]
(ii) base [1]
proton acceptor [1]
(e) plant growth depends on soil acidity
or $\mathrm{pH} / \mathrm{plants}$ have optimum pH (for
growth) [1]
add $\mathrm{Ca}(\mathrm{OH})_{2} / \mathrm{CaO} / \mathrm{CaCO}_{3} /$ lime / slaked
lime / quicklime / limestone [1]

PAGE 109
6 (a) (i) to neutralise all the acid / so all acid reacts [1]
not: reaction goes to completion
(ii) remove excess carbonate / removes
unreacted carbonate [1]
not: remove solid
(iii) need water of crystallisation / hydrated crystals / to get crystals [1]
(iv) filter / decant / wash crystals [1]
dry with filter paper or tissues etc. [1]
accept: in warm oven / warm place / in sun not: just heat
(b) (i) potassium carbonate is soluble / both salts soluble [1]
(ii) use potassium carbonate solution [1]
accept: implication of solution - in pipette /
burette / 25 cm 3
titrate / titration term required [1]
use an indicator accept: any named acid/base indicator [1]
repeat without indicator / use carbon to remove indicator [1]

PAGE 110

(b) test it with both hydrochloric acid and sodium hydroxide(aq) [1]
accept: any named strong acid and any strong alkali
if only acid and alkali given then $\max =3$
basic oxide reacts with acid [1]
acidic oxide reacts with alkali/base [1]
amphoteric reacts with both [1]
accept: for react - form salt and water

PAGE 111

1 (a) (i) lithium oxide / strontium oxide [1]
(ii) sulfur dioxide / nitrogen dioxide [1]
(iii) aluminium oxide [1]
(iv) carbon monoxide [1]
accept: correct formulae
(b) sulfur dioxide [1]
burn (fossil) fuel containing sulfur / volcanoes [1]
nitrogen dioxide [1]
reaction of nitrogen and oxygen [1]
high temperatures / in car engine [1] not: exhaust

PAGE 112

8 (a) filter / centrifuge / decant [1]
(partially) evaporate / heat / boil [1]
allow to crystallise / cool / let crystals form [1]
dry crystals / dry between filter paper / leave in a warm place to dry [1]
"dry" on its own must be a verb
evaporate to dryness only marks 1 and 2 note if discuss residue only mark 1
(b) (i) zinc / aluminium / lead / tin / chromium
[1]
(ii) white precipitate [1]
precipitate dissolves / colourless solution forms / forms a clear solution
/ soluble in excess [1]

PAGE 113

(c) (i) proton donor [1]
(ii) measure $\mathrm{pH} /$ use pH paper [1]
sulfuric acid has the lower pH [1]
accept colours / appropriate numerical
values
OR
measure electrical conductivity [1] sulfuric acid is the better conductor [1] OR
add magnesium / named fairly reactive metal [1]
ethanedioic acid gives the slower reaction [1]
NOTE result must refer to rate not
amount
OR
add a carbonate [1]
ethanedioic acid gives the slower reaction [1]
NOTE result must refer to rate not amount
(ii) add sodium hydroxide (aq) / alkali [1] carbon dioxide dissolves, leaving methane [1]
(c) (i) $\mathrm{V}_{2} \mathrm{O}_{3}[1]$
VO_{2} [1]
(ii) add sodium hydroxide(aq) or other named alkali [1]
not ammonia
cond vanadium(IV) oxide dissolves / reacts [1]
filter (to remove vanadium(III) oxide) [1]

PAGE 114

2 (a) $\mathrm{pH}<7$ [1]
example [1]
$\mathrm{pH}>7$ [1]
example [1]
NOT amphoteric oxides $\mathrm{Be}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Sn}$ etc
$\mathrm{pH}=7$ [1]
example $\mathrm{H} 2 \mathrm{O}, \mathrm{CO}$, NO [1]
the two marks are not linked, mark each independently
NOT amphoteric oxides $\mathrm{Be}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Sn}$ etc.
(b) (i) shows both basic and acidic
properties [1]
(ii) a named strong acid [1]
a named alkali [1]

PAGE 115

4 (a) (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$ [1]
NOT $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2} / \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{COO}$
(ii) sodium hydroxide + benzoic acid = sodium benzoate + water [1]
correct spelling needed NOT benzenoate ACCEPT correct symbol equation
(iii) sodium carbonate or oxide or hydrogencarbonate any TWO [2]
NOT Na

