CONTENT PAGE

S/NO	CHAPTER	PAGE NO		
SECTI	ON I: MEASUREMENT	3		
1	Measurement 4			
SECTI	ON II: NEWTONIAN MECHANICS	9		
2	Kinematics	10		
3	Dynamics	11		
4	Forces	14		
5	Work, Energy and Power	16		
6	Motion in a Circle	18		
7	Gravitational Field	19		
8	Oscillations	23		
SECTI	ON III: THERMAL PHYSICS	27		
9	Thermal Physics	28		
SECTI	ON IV: WAVES	31		
10	Wave Motion	32		
11	Superposition	35		
SECTI	ON V: ELECTRICITY & MAGNETISM	40		
12	Electric Fields	41		
13	Current of Electricity	45		
14	D.C. Circuits	49		
15	Electromagnetism	53		
16	Electromagnetic Induction	58		
17	Alternating Currents	63		
SECTI	ON VI: MODERN PHYSICS	65		
18	Quantum Physics	66		
19	Lasers & Semiconductors	71		
20	Nuclear Physics	74		

SECTION I MEASUREMENT

Chapter 1: Measurement

- SI Units
- Errors and Uncertainties

- Scalars and Vectors

a. Recall the following base quantities and their units; mass (kg), length (m), time (s), current (A), temperature (K), amount of substance (mol).

Base Quantities	SI Units	SI Units		
Base quantities	Name	Symbol		
Length	metre	m		
Mass	kilogram	kg		
Time	second	S		
Amount of substance	mole	mol		
Temperature	Kelvin	K		
Current	ampere	A		
Luminous intensity	candela	cd		

b. Express derived units as products or quotients of the base units and use the named units listed in 'Summary of Key Quantities, Symbols and Units' as appropriate.

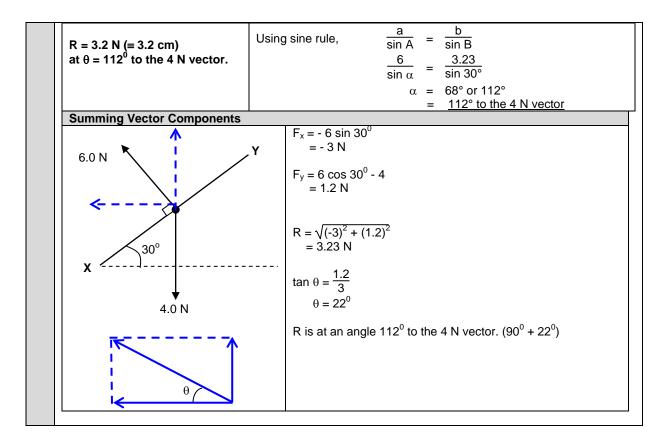
A derived unit can be expressed in terms of products or quotients of base units.

Derived Quantities	Equation	Derived Units
Area (A)	$A = L^2$	m ²
Volume (V)	$V = L^3$	m ³
Density (ρ)	$\rho = \frac{m}{V}$	$\frac{\mathrm{kg}}{\mathrm{m}^3} = \mathrm{kg} \; \mathrm{m}^{-3}$
Velocity (v)	$v = \frac{L}{t}$	$\frac{m}{s} = m s^{-1}$
Acceleration (a)	$a = \frac{\Delta V}{t}$	$\frac{m s^{-1}}{s} = m s^{-2}$
Momentum (p)	p = m x v	$(kg)(m s^{-1}) = kg m s^{-1}$

Derived Quantities	Equation Derived Unit		d Unit	Derived Units	
Deriveu Quantities	Lquation	Special Name	Symbol	Derived Offics	
Force (F)	$F = \frac{\Delta p}{t}$	Newton	Ν	$\frac{\text{kg m s}^{-1}}{\text{s}} = \text{kg m s}^{-2}$	
Pressure (p)	$p = \frac{F}{A}$	Pascal	Ра	$\frac{\text{kg m s}^{-2}}{\text{m}^2} = \text{kg m}^{-1} \text{ s}^{-2}$	
Energy (E)	E = F x d	joule	J	$(kg m s^{-2})(m) = kg m^2 s^{-2}$	
Power (P)	$P = \frac{E}{t}$	watt	W	$\frac{\text{kg m}^2 \text{ s}^{-2}}{\text{s}} = \text{kg m}^2 \text{ s}^{-3}$	
Frequency (f)	$f = \frac{1}{t}$	hertz	Hz	$\frac{1}{s} = s^{-1}$	
Charge (Q)	Q = I x t	coulomb	С	As	
Potential Difference (V)	$V = \frac{E}{Q}$	volt	V	$\frac{\text{kg m}^2 \text{s}^{-2}}{\text{A s}} = \text{kg m}^2 \text{s}^{-3} \text{A}^{-1}$	
Resistance (R)	$R = \frac{V}{I}$	ohm	Ω	$\frac{\text{kg m}^2 \text{ s}^{-3} \text{ A}^{-1}}{\text{A}} = \text{kg m}^2 \text{ s}^{-3} \text{ A}^{-2}$	

MEGALECTUR www.megalecture.com

16 Science, 1995).			
	*		
		indicate decimal sub-multiples or mul ο (μ), milli (m), centi (c), deci (d), kilo (
Multiplying Factor	Prefix	Symbol	
10 ⁻¹²	pico	р	
10 ⁻⁹	nano	n	
10 ⁻⁶	micro	μ	
10^{-3}	milli	m	
10 ⁻² 10 ⁻¹	centi deci	c d	
10^{3}	kilo	d	
10	mega	к М	
10 ⁹	giga	G	
10 ¹²	tera	T	
		1 -	
Make reasonable estin	mates of physical quantitie	s included within the syllabus.	
Mass of 3 cans (330 r		1 kg	
Physical Quantity Mass of 3 caps (330 r	ml) of Coke	Reasonable Estimate	
Mass of a medium-siz		1000 kg	
Length of a football f		100 m	
Reaction time of a yo	ung man	0.2 s	
- Occasionally,	students are asked to est	imate the area under a graph. The us	
 Occasionally, counting squa Often, when m EXAMPLE 1E1 Estimate the average restricted of the second seco	students are asked to est res within the enclosed area	imate the area under a graph. The usi is used. (eg. Topic 3 (Dynamics), N94P2C a and a simple calculation may be involved	Q1c)
 Occasionally, counting squa Often, when m EXAMPLE 1E1 Estimate the average response of the second second	students are asked to est res within the enclosed area haking an estimate, a formula unning speed of a typical 17- sity = $\frac{\text{distance}}{\text{time}}$ = $\frac{2400}{12.5 \times 60}$ = 3.2	imate the area under a graph. The usi is used. (eg. Topic 3 (Dynamics), N94P2C a and a simple calculation may be involved	Q1c)
 Occasionally, counting squa Often, when m EXAMPLE 1E1 Estimate the average ruveloc 	students are asked to est res within the enclosed area haking an estimate, a formula unning speed of a typical 17- tity = $\frac{\text{distance}}{\text{time}}$ = $\frac{2400}{12.5 \times 60} = 3.2$ $\approx 3 \text{ m s}^{-1}$ (2)	imate the area under a graph. The usi is used. (eg. Topic 3 (Dynamics), N94P2C a and a simple calculation may be involved	Q1c)
 Occasionally, counting squa Often, when m EXAMPLE 1E1 Estimate the average m veloc 	students are asked to est res within the enclosed area haking an estimate, a formula unning speed of a typical 17- tity = $\frac{\text{distance}}{\text{time}}$ = $\frac{2400}{12.5 \times 60} = 3.2$ $\approx 3 \text{ m s}^{-1}$ (2)	imate the area under a graph. The usi is used. (eg. Topic 3 (Dynamics), N94P2C a and a simple calculation may be involved	Q1c)
 Occasionally, counting squa Often, when m EXAMPLE 1E1 Estimate the average ruveloc Veloc 	students are asked to est res within the enclosed area haking an estimate, a formula unning speed of a typical 17- tity = $\frac{\text{distance}}{\text{time}}$ = $\frac{2400}{12.5 \times 60} = 3.2$ $\approx 3 \text{ m s}^{-1}$ (2) stic?	imate the area under a graph. The usi is used. (eg. Topic 3 (Dynamics), N94P2C a and a simple calculation may be involved	Q1c)
 Occasionally, counting squa Often, when m EXAMPLE 1E1 Estimate the average m veloc 	students are asked to est res within the enclosed area naking an estimate, a formula unning speed of a typical 17- sity = $\frac{distance}{time}$ = $\frac{2400}{12.5 \times 60} = 3.2$ $\approx 3 \text{ m s}^{-1}$ /2) stic? Explanation gy of a A bus of mass m 80 km h ⁻¹ , which i 000 J $\frac{1}{2} m(18^2) = 162m$	imate the area under a graph. The usi is used. (eg. Topic 3 (Dynamics), N94P2C a and a simple calculation may be involved	Q1c) d. etween 50 t approximate 30 000. Thu:
 Occasionally, counting squa Often, when m EXAMPLE 1E1 Estimate the average ruveloc Veloc EXAMPLE 1E2 (N08/ IL Which estimate is realistication of the structure of the	students are asked to est res within the enclosed area naking an estimate, a formula unning speed of a typical 17- sity = $\frac{\text{distance}}{\text{time}}$ = $\frac{2400}{12.5 \times 60} = 3.2$ $\approx 3 \text{ m s}^{-1}$ /2) stic? Explanation gy of a A bus of mass m on an 80 km h ⁻¹ , which i 000 J $\frac{1}{2} m(18^2) = 162m$ m = 185kg, which estimate. omestic A single light bul	imate the area under a graph. The usi is used. (eg. Topic 3 (Dynamics), N94P2C a and a simple calculation may be involved year-old's 2.4-km run. travelling on an expressway will travel be s 13.8 to 22.2 m s ⁻¹ . Thus, its KE will be a . Thus, for its KE to be 30 000J: 162 <i>m</i> = 3	Q1c) d. etween 50 f approximate 30 000. Thu not a realist W to 60 V

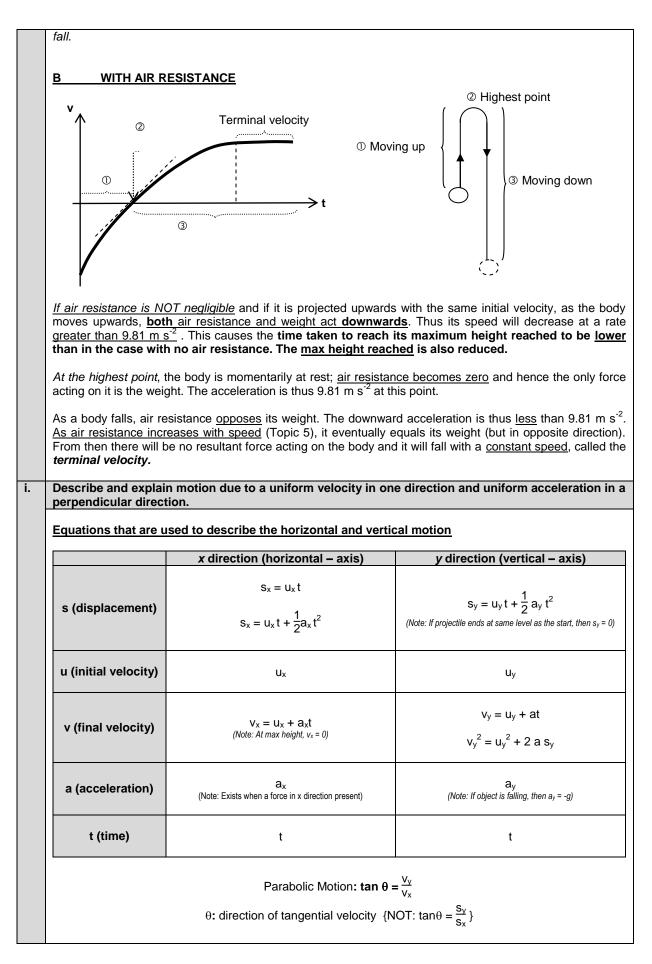

WWW.youtube.com/megalecture MEGALECTURE

		ie volume of air in a r tyre is 0.03 m ³ .		R	Estimating the width of a tyre, t , is 15 cm or 0.15 m, and estimating R to be 40 cm and r to be 30 cm, volume of air in a car tyre is $= \pi (R^2 - r^2) t$ $= \pi (0.4^2 - 0.3^2)(0.15)$ $= 0.033 \text{ m}^3$ $\approx 0.03 \text{ m}^3$ (to one sig. fig.)
f. g.	random				errors (including zero errors) and accuracy.
	Randon	n error is the type of erro	or which causes re	adings to scatter a	bout the true value.
	System	atic error is the type of e	error which causes	s readings to deviat	e in one direction from the true value.
		on: refers to the <u>degree</u> . {NB: regardless of whet			repeated measurements of the same
	Accurat quantity		f agreement betwo	een the result of a	measurement and the true value of the
		$\rightarrow \rightarrow R$ Error Higher $\rightarrow \rightarrow \rightarrow Less$ Precise -			
	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$	true value I		tru	ue value
	→S Error Higher →Less Accurate				
	gher → – ırate → –	true value			true value
	↓ ↓				
h.		inties (a rigorous statis			n of actual, fractional or percentage
	For a qu	iantity x = (2.0 ± 0.1) mm	۱,		
		Absolute uncertainty,	Δx Δx	= ± 0.1 mm	
		nal uncertainty, age uncertainty,	$\frac{\Delta x}{x}$ $\frac{\Delta x}{x} \times 100\%$	= 0.05	
			x ^ 10070		
	If $p = \frac{2x}{2}$	$\frac{x+y}{3}$ or $p = \frac{2x-y}{3}$,	Δρ	$=\frac{2\Delta x + \Delta y}{3}$	
	lf r = 2xy	$y^{3} \text{ or } r = \frac{2x}{y^{3}},$	$\frac{\Delta r}{r}$	$=\frac{\Delta x}{x}+\frac{3\Delta y}{y}$	
		rror <u>must</u> be recorded to nber of decimal places a			letermined by its <u>actual error</u> .

M E G A L E C T U R E www.megalecture.com

	For eg, suppo 0.04848 m s ⁻² .	se g has been initiall . The final value of ∆c	y calculated to be 9.8064 a must be recorded as 0.	45 m s ⁻² & Δ g has been initially calculated to be 05 m s ⁻² {1 sf }, and the appropriate recording of
	g is (9.81 \pm 0.0	05) m s ⁻² .		
i. Distinguish between scalar and vector quantities, and give examples of each.			ive examples of each.	
	Туре	Scalar		Vector
	Definition		as a magnitude only . It scribed by a certain	A vector quantity has both magnitude and
	Examples		nass, time, temperature, tic energy, pressure, rge etc.	
			associate kinetic energy vectors because of the	
		such consideration	s involved. However, s have no bearings on y is a vector or scalar.	
j. k.		ract coplanar vecto /ector as two perpe	rs. ndicular components.	
) N. At a certain instant, XY is inclined at 30° to right angles to XY so that the kite flies freely.
	6.0 N			
			x 30°	
			4.0 N	
	-	scale drawing	By calculations usin theorem	g sine and cosine rules, or Pythagoras'
	magnitude a resultant for kite.	e diagram to find the ind direction of the rce acting on the	resultant, R	
	Scale: 1 cm	≡ 1.0 N	α	
	resu	ltant, R		40.01
		κ θ	6.0 N	4.0 N
	6.0 N			↓
		30°	Using cosine rule,	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $R^{2} = 4^{2} + 6^{2} - 2(4)(6)(\cos 30^{\circ})$ <u>$R = 3.23 N$</u>
	L	•		

MEGALECTUR www.megalecture.com



SECTION II NEWTONIAN MECHANICS

Cha	hapter 2: Kinematics					
Ond	- Rectilinear Motion					
а.	- Non-linear M Define displace	otion ment, speed, velocity and acceleration.				
	Distance:	Total length covered irrespective of the direction of motion.				
	Displacement:	Distance moved in a certain direction				
	Speed:	Speed: Distance travelled per unit time.				
	Velocity:	is defined as the rate of change of displacement, or, displacement per unit time { NOT : displacement <u>over</u> time, nor, displacement <u>per second</u> , nor, rate of change of displacement per unit time}				
	Acceleration:	is defined as the rate of change of velocity.				
b.	Use graphical acceleration.	methods to represent distance travelled, displacement, speed, velocity and				
	Self-explanatory					
c.	Find displacement	ent from the area under a velocity-time graph.				
	The area under a	a velocity-time graph is the change in displacement.				
d.	Use the slope o	f a displacement-time graph to find velocity.				
	The gradient of a	a displacement-time graph is the {instantaneous} velocity.				
e.	Use the slope o	f a velocity-time graph to find acceleration.				
	The gradient of a	a velocity-time graph is the acceleration.				
f.		he definitions of velocity and acceleration, equations that represent uniformly				
g.	Solve problems	accelerated motion in a straight line. Solve problems using equations which represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without acceleration.				
	1. $v = u + a$					
	2. $s = \frac{1}{2} (u^{2})^{2}$ 3. $v^{2} = u^{2}$ 4. $s = ut$	 u + v) t: derived from the area under the v-t graph + 2 a s: derived from equations (1) and (2) + ½ a t²: derived from equations (1) and (2) 				
		apply only if the motion takes place along a straight line and the acceleration is constan				
		ir resistance must be negligible.}				
h.	Describe qualita	atively the motion of bodies falling in a uniform gravitational field with air resistance.				
	Consider a body	moving in a uniform gravitational field under 2 different conditions:				
	<u>A WITHO</u>	UT AIR RESISTANCE				
	v ↑ ⊙	⁽²⁾ ⁽				
	the weight of the	<i>ible air resistance</i> , whether the body is moving up, or at the highest point or moving down, be body, W, is the <u>only force</u> acting on it, causing it to experience a <u>constant acceleration</u> . <u>Int</u> of the v-t graph is <u>constant throughout</u> its rise and fall. The body is said to undergo <i>free</i>				

www.youtube.com/megalecture

Cha	pter 3: Dynamics					
	 Newton's laws of motion Linear momentum and its conservation 					
а.	State each of Newton's laws of motion.					
	Newton's First Law Every body continues in a state of rest or uniform motion in a straight line unless a net (external) force acts on it.					
	Newton's Second Law The rate of change of momentum of a body is directly proportional to the net force acting on the body, and the <u>momentum change takes place in the direction of the net force.</u>					
	Newton's Third Law When object X exerts a force on object Y, object Y exerts a force of the same type that is equal in magnitude and opposite in direction on object X.					
	The two forces ALWAYS act on different objects and they form an action-reaction pair.					
b.	Show an understanding that mass is the property of a body which resists change in motion.					
	Mass: is a measure of the amount of matter in a body, & is the property of a body which resists change in motion.					
C.	Describe and use the concept of weight as the effect of a gravitational field on a mass.					
	Weight: is the force of gravitational attraction (exerted by the Earth) on a body.					
d.	Define linear momentum and impulse.					
	Linear momentum of a body is defined as the product of its mass and velocity ie $p = m v$					
	Impulse of a force I is defined as the product of the force and the time Δt during which it acts					
	ie I = F x Δt {for force which is <u>const</u> over the duration Δt }					
	For a variable force, the impulse = Area under the F-t graph { JFdt; may need to "count squares"}					
	Impulse is <u>equal in magnitude</u> to the change in momentum of the body acted on by the force. Hence the change in momentum of the body is equal in mag to the area under a (net) force-time graph. { <u>Incorrect</u> to <u>define</u> impulse as <i>change in momentum</i> }					
е.	Define force as rate of change of momentum.					
	Force is defined as the rate of change of momentum, ie $F = \frac{m(v - u)}{t} = ma$ or $F = v \frac{dm}{dt}$					
	The {one} Newton is defined as the force needed to accelerate a mass of 1 kg by 1 m s ⁻² .					
f.	Recall and solve problems using the relationship $F = ma$ appreciating that force and acceleration are always in the same direction.					
	Self-explanatory					
g.	State the principle of conservation of momentum.					
	Principle of Conservation of Linear Momentum: When objects of a system interact, their total momentum before and after interaction are equal if no net (external) force acts on the system.					
	or, The total momentum of an <u>isolated</u> system is constant ie $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$ if net $F = 0$ {for all collisions }					
	NB: Total momentum DURING the interaction/collision is also conserved.					
h.	Apply the principle of conservation of momentum to solve problems including elastic and inelastic					

MEGALECTUR www.megalecture.com

	interactions between two bodie required.)	es in one dimension. (Knowledge of coefficient of restitution is not		
	(Perfectly) elastic collision:	Both momentum & kinetic energy of the system are conserved.		
	Inelastic collision:	Only momentum is conserved, total kinetic energy is not conserved.		
	Perfectly inelastic collision:	Only momentum is conserved, and the particles stick together after collision. (i.e. move with the same velocity.)		
i.	Recognise that, for a perfectly elastic collision between two bodies, the relative speed of approach is equal to the relative speech of separation.			
	For all <i>elastic</i> collisions, $u_1 - u_2 = v_2 - v_1$			
	ie. relative speed of approach = relative speed of separation			
	or, $\frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$			
j.	Show an understanding that, whilst the momentum of a system is always conserved in interactions between bodies, some change in kinetic energy usually takes place.			
	In inelastic collisions, total energy energy such as sound and heat er	y is conserved but Kinetic Energy may be converted into other forms of nergy.		

Cha	pter 4: Forces
	 Types of force Equilibrium of force
	- Centre of gravity
а.	- Turning effects of forces Recall and apply Hooke's Law to new situations or to solve related problems.
	Within the limit of proportionality, the extension produced in a material is directly proportional to the force/load applied
	ie F = kx
	Force constant k = force per unit extension (F/x) {N08P3Q6b(ii)}
b.	Deduce the elastic potential energy in a deformed material from the area under a force-extension graph.
	Elastic potential energy/strain energy = Area under the F-x graph {May need to "count the squares"}
	For a material that obeys Hooke's law,
	Elastic Potential Energy, $E = \frac{1}{2} F x = \frac{1}{2} k x^2$
с.	Describe the forces on mass, charge and current in gravitational, electric and magnetic fields, as appropriate.
	Forces on Masses in Gravitational Fields - A region of space in which a <u>mass</u> experiences an (attractive) force due to the presence of <u>another mass</u> .
	Forces on Charge in Electric Fields - A region of space where a <u>charge</u> experiences an (attractive or repulsive) force due to the presence of <u>another charge</u> .
	Forces on Current in Magnetic Fields - Refer to Chapter 15
d.	Solve problems using p = ρgh.
	Hydrostatic Pressure p = ρg h
	{or, pressure difference between 2 points separated by a vertical distance of h }
e.	Show an understanding of the origin of the upthrust acting on a body in a fluid.
t.	State that an upthrust is provided by the fluid displaced by a submerged or floating object.
	Upthrust: An upward force exerted by a fluid on a submerged or floating object; arises because of the <u>difference in pressure</u> between the upper and lower surfaces of the object.
g.	Calculate the upthrust in terms of the weight of the displaced fluid.
h.	Recall and apply the principle that, for an object floating in equilibrium, the upthrust is equal to the weight of the new object to new situations or to solve related problems.
	Archimedes' Principle: Upthrust = weight of the fluid displaced by submerged object.
	ie Upthrust = $Vol_{submerged} \times \rho_{fluid} \times g$
i.	Show a qualitative understanding of frictional forces and viscous forces including air resistance. (No treatment of the coefficients of friction and viscosity is required.)
	 Frictional Forces: The contact force between two surfaces = (friction² + normal reactionn²)^{1/2} The component along the surface of the contact force is called friction. Friction between 2 surfaces always opposes relative motion {or attempted motion}, and Its value varies up to a maximum value {called the static friction}

M E G A L E C T U R E www.megalecture.com

	A force that opposes the motion of an object in a fluid;					
		n there is (relative) motion.				
	 Magnitude of vis 	Magnitude of viscous force <u>increases with the speed</u> of the object				
j.	Use a vector triangle to represent forces in equilibrium.					
	See Chapter 1j, 1k					
k.	Show an understanding that the weight of a body may be taken as acting at a single point known as its centre of gravity.					
	Centre of Gravity of an considered to act.	object is defined as that pt through which the entire weight of the object may be				
Ι.	Show an understanding	that a couple is a pair of forces which tends to produce rotation only.				
	A couple is a pair of force	es which tends to produce rotation only.				
m.	Define and apply the mo	oment of a force and the torque of a couple.				
	Moment of a Force:	The product of the force and the perpendicular distance of its line of action to the pivot				
	Torque of a Couple:	The produce of one of the forces of the couple and the perpendicular distance between the lines of action of the forces. (WARNING: NOT an action-reaction pair as they act on the same body.)				
n.	Show an understanding equilibrium.	that, when there is no resultant force and no resultant torque, a system is in				
	 The resultant for The resultant model If a mass is acted upon by The lines of action When a vector of 	um (of an extended object): ce acting on it in any direction equals zero oment about any point is zero. y <u>3 forces</u> <i>only</i> and remains in <u>equilibrium</u> , then on of the 3 forces must pass through a <u>common point</u> . diagram of the three forces is drawn, the forces will form a closed triangle (vector				
0.	triangle), with the 3 vectors pointing in the same orientation around the triangle. Apply the principle of moments to new situations or to solve related problems.					
	Principle of Moments:	For a body to be in equilibrium, the sum of all the anticlockwise moments <i>about any point</i> must be equal to the sum of all the clockwise moments about that same point.				

Char	oter 5: Work, Energy and Power	
спа _н -	- Work	
-	 Energy conversion and conservation Potential energy and kinetic energy 	
	- Power	
a.	Show an understanding of the concept of work in terms of the product of a force and displacement	
in the direction of the force. b. Calculate the work done in a number of situations including the work done by expanding against a constant external pressure: $W = p\Delta V$.		
	Work Done by a force is defined as the product of the force and displacement (of its point of application) in the direction of the force	
	ie W = Fscosθ	
	Negative work is said to be done by <i>F</i> if <i>x</i> or its compo. is <u>anti-parallel</u> to <i>F</i>	
	If a <u>variable</u> force F produces a displacement in the direction of F, the work done is determined from the <u>area</u> <u>under F-x graph</u> . {May need to find area by "counting the squares". }	
C.	Give examples of energy in different forms, its conversion and conservation, and apply the principle of energy conservation to simple examples.	
	By Principle of Conservation of Energy,	
	Work Done on a system =	
	KE gain + GPE gain + Thermal Energy generated {ie Work done against friction}	
d.	Derive, from the equations of motion, the formula $E_k = \frac{1}{2}mv^2$.	
	Consider a rigid object of mass m that is initially at rest. To accelerate it uniformly to a speed v, a constant net force F is exerted on it, parallel to its motion over a displacement s.	
	Since F is constant, acceleration is constant,	
	Therefore, using the equation: $v^2 = u^2 + 2 a s$, a s $= \frac{1}{2} (v^2 - u^2)$	
	a s $=\frac{1}{2}(v^2 - u^2)$	
	Since kinetic energy is equal to the work done on the mass to bring it from rest to a speed v,	
	The kinetic energy, E_{K} = Work done by the force F = F s	
	= m a s	
	$=\frac{1}{2}m(v^2 - u^2)$	
e.	Recall and apply the formula $E_k = \frac{1}{2}mv^2$.	
	Self-explanatory	
f.	Distinguish between gravitational potential energy, electric potential energy and elastic potential energy.	
	Gravitational potential energy : this arises in a system of <i>masses</i> where there are attractive gravitational forces between them. The gravitational potential energy of an object is the energy it possesses by virtue of its position in a gravitational field.	
	Elastic potential energy : this arises in a system of atoms where there are either attractive or repulsive short-range inter-atomic forces between them. (From Topic 4, E. P. E. = $\frac{1}{2}$ k x ² .)	
	Electric potential energy: this arises in a system of <i>charges</i> where there are either attractive or repulsive	

	electric forces between them.		
g.	Show an understanding of and use the relationship between force and potential energy in a uniform field to solve problems.		
	The potential energy, U, of a body in a force field {whether gravitational or electric field} is related to the force F it experiences by: $F = -\frac{dU}{dx}$.		
h.	Derive, from the defining equation $W = Fs$ the formula $E_p = mgh$ for potential energy changes near the Earth's surface.		
	Consider an object of mass m being lifted vertically by a force F, without acceleration, from a certain height h_1 to a height h_2 . Since the object moves up at a constant speed, F is equal to m g. The change in potential energy of the mass $=$ Work done by the force F $=$ F s $=$ F h $=$ m g h		
i.	Recall and use the formula E_p = mgh for potential energy changes near the Earth's surface.		
	Self-explanatory		
j.	Show an appreciation for the implications of energy losses in practical devices and use the concept of efficiency to solve problems.		
	Efficiency: The ratio of (useful) output energy of a machine to the input energy.		
	ie = Useful Output Energy × 100 % = Useful Output Power × 100 %		
k.	Define power as work done per unit time and derive power as the product of force and velocity.		
	Power {instantaneous} is defined as the work done per unit time.		
	$P = \frac{\text{Total Work Done}}{\text{Total Time}}$ $= \frac{W}{t}$		
	Since work done $W = F x s$,		
	$P = \frac{F \times s}{t}$		
	$= \mathbf{F} \mathbf{v}$		
	 for object moving at <u>const speed</u>: F = Total resistive force {equilibrium condition} for object beginning to <u>accelerate</u>: F = Total resistive force <u>+ ma</u> {N07P1Q10,N88P1Q5} 		

 Centripetal acceleration Centripetal force Express angular displacement in radians. Radian (rad) is the S.I. unit for angle, θ and it can be related to degrees in the following complete revolution, an object rotates through 360°, or 2π rad. As the object moves through an angle θ, with respect to the centre of rotation, this angle θ is angular displacement. Understand and use the concept of angular velocity. Angular velocity (ω) of the object is the rate of change of angular displacement with respect to w = θ/t = 2π/T (for one complete revolution) Recall and use v = rω. Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. v = arc length/time taken = rθ/t = rω Note: (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that prise sometimes referred to as the <i>tangential velocity</i>. 	
a.Express angular displacement in radians.Radian (rad) is the S.I. unit for angle, θ and it can be related to degrees in the following complete revolution, an object rotates through 360° , or 2π rad.As the object moves through an angle θ , with respect to the centre of rotation, this angle θ is angular displacement.b.Understand and use the concept of angular velocity.Angular velocity (ω) of the object is the rate of change of angular displacement with respect to $\omega = \frac{\theta}{t} = \frac{2\pi}{T}$ (for one complete revolution)c.Recall and use $v = r\omega$.Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. $v = \frac{\operatorname{arc length}}{\operatorname{time taken}} = \frac{r\theta}{t} = r\omega$ Note: (i)The direction of the linear velocity is at a <i>tangent</i> to the circle described at that point in the circle described at that point in the circle described at that point in the direction of the linear velocity is at a tangent to the circle described at that point in the direction of the linear velocity is at a tangent to the circle described at that point in the direction of the linear velocity is at a tangent to the circle described at that point in the direction of the linear velocity is at a tangent to the circle described at that point is the point in the direction of the linear velocity is at a tangent to the circle described at that point is the point in the direction of the linear velocity is at a tangent to the circle described at that point is the point in the direction of the linear velocity is at a tangent to the circle described at that point is the point in the direction of the linear velocity is at a tangent to the circle described at that point is the point in the direction of the linear velocity is at a tangent to the circle described at the point is the point in the direction of the linear velocit	
complete revolution, an object rotates through 360°, or 2π rad. As the object moves through an angle θ , with respect to the centre of rotation, this angle θ is angular displacement. b. Understand and use the concept of angular velocity. Angular velocity (ω) of the object is the rate of change of angular displacement with respect to $\omega = \frac{\theta}{t} = \frac{2\pi}{T}$ (for one complete revolution) c. Recall and use $\mathbf{v} = \mathbf{r}\omega$. Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. $v = \frac{\operatorname{arc length}}{\operatorname{time taken}} = \frac{r\theta}{t} = r\omega$ Note: (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that parts	
angular displacement.b.Understand and use the concept of angular velocity.Angular velocity (ω) of the object is the rate of change of angular displacement with respect to $\omega = \frac{\theta}{t} = \frac{2\pi}{T}$ (for one complete revolution)c.Recall and use v = r ω .Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. $v = \frac{\operatorname{arc length}}{\operatorname{time taken}} = \frac{r\theta}{t} = r\omega$ Note: (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that part	g way. In one
Angular velocity (ω) of the object is the rate of change of angular displacement with respect to $\omega = \frac{\theta}{t} = \frac{2\pi}{T}$ (for one complete revolution) c. Recall and use v = r ω . Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. v = $\frac{arc length}{time taken} = \frac{r\theta}{t} = r\omega$ Note: (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that particular path.	known as the
$\omega = \frac{\theta}{t} = \frac{2\pi}{T}$ (for one complete revolution) c. Recall and use v = r ω . Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. v = $\frac{\text{arc length}}{\text{time taken}} = \frac{r\theta}{t} = r\omega$ Note: (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that parts	
c. Recall and use $v = r\omega$. Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. $v = \frac{\text{arc length}}{\text{time taken}} = \frac{r\theta}{t} = r\omega$ Note: (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that particular path.	o time.
Linear velocity, v, of an object is its <i>instantaneous</i> velocity at any point in its circular path. v = $\frac{\text{arc length}}{\text{time taken}} = \frac{r\theta}{t} = r\omega$ Note : (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that particular path.	
$v = \frac{\text{arc length}}{\text{time taken}} = \frac{r\theta}{t} = r\omega$ Note: (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that performance of the linear velocity is at a <i>tangent</i> to the circle described at that performance of the linear velocity is at a <i>tangent</i> to the circle described at that performance of the linear velocity is at a <i>tangent</i> to the circle described at that performance of the linear velocity is at a <i>tangent</i> to the circle described at that performance of the linear velocity is at a <i>tangent</i> to the circle described at that performance of the linear velocity is at a <i>tangent</i> to the circle described at that performance of the linear velocity is at a <i>tangent</i> to the circle described at the tangent to the circle described at the tangent velocity is at a tangent to the circle described at the tangent velocity is at a tangent to the circle described at the tangent velocity is at a tangent velocity velocity is at a tangent velocity velocity velocity is at a tangent velocity velocit	
Note : (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that per	
· · · · ·	
	oint. Hence it
(ii) ω is the same for every point in the rotating object, but the linear velocity v is gre further from the axis.	ater for points
d. Describe qualitatively motion in a curved path due to a perpendicular force, and un centripetal acceleration in the case of a uniform motion in a circle.	derstand the
A body moving in a circle at a <u>constant speed</u> changes velocity {since its direction changes}. T experiences an acceleration, a force and a change in momentum.	⁻hus, it <i>alway</i> s
e. Recall and use centripetal acceleration $a = r\omega^2$, $a = \frac{v^2}{r}$.	
Centripetal acceleration, $\mathbf{a} = \mathbf{r} \omega^2$ $= \frac{\mathbf{v}^2}{\mathbf{r}}$ {in magnitude}	
f. Recall and use centripetal force $F = mr\omega^2$, $F = \frac{mv^2}{r}$.	
Centripetal force is the resultant of all the forces that act on a system in circular motion.	
{It is not a particular force; "centripetal" means "centre-seeking". Also, when asked to dra showing all the forces that act on a system in circular motion, it is wrong to include a force that "centripetal force". }	
Centripetal force, F = m r $\omega^2 = \frac{mv^2}{r}$ {in magnitude}	
A person in a satellite orbiting the Earth experiences "weightlessness" although the gravi fie height is not zero because the person and the satellite would both have the <u>same accele</u> contact force between man & satellite/ <u>normal reaction on the person is zero {</u> Not because is negligible.}	

MEGALECTURE www.megalecture.com

Cha	apter 7: Gravitation - Gravitational Field		
	- Force between point masses		
	- Field of a point mass		
	 Field near to the surface of the Earth Gravitational Potential 		
a.	Show an understanding of the concept of a gravitational field as an example of field of force an		
	define gravitational field strength as force per unit mass.		
	Gravitational field strength at a point is defined as the gravitational force per unit mass at that point.		
b.	Recall and use Newton's law of gravitation in the form $F = \frac{GMm}{r^2}$		
	Newton's low of anyitation:		
	Newton's law of gravitation : The (mutual) gravitational force F between two point masses M and m separated by a distance r is given by		
	CMm		
	$\mathbf{F} = \frac{\mathbf{GMm}}{\mathbf{r}^2}$ where G: Universal gravitational constant		
	or , the gravitational force of between two point masses is proportional to the product of their masses & inversely proportional to the square of their separation.		
C.	Derive, from Newton's law of gravitation and the definition of gravitational field strength, the		
	equation $g = \frac{GM}{r^2}$ for the gravitational field strength of a point mass.		
	Gravitational field strength at a <i>point</i> is the gravitational force per unit mass at that point. It is a vector and its S.I. unit is N kg ⁻¹ .		
	By definition, $g = \frac{F}{m}$		
	By Newton Law of Gravitation, $F = \frac{GMm}{r^2}$		
	Combining, magnitude of $g = \frac{GM}{r^2}$		
	Therefore $\mathbf{g} = \frac{\mathbf{G}\mathbf{M}}{r^2}$, M = Mass of object "creating" the field		
d.	Recall and apply the equation $g = \frac{GM}{r^2}$ for the gravitational field strength of a point mass to new		
	situations or to solve related problems.		
	Example 7D1 Assuming that the Earth is a uniform sphere of radius 6.4 x 10^6 m and mass 6.0 x 10^{24} kg, find the gravitational field strength g at a point		
	(a) <u>on the surface,</u>		
	GM at a set		
	$g = \frac{GM}{r^2} = (6.67 \times 10^{-11})(6.0 \times 10^{24})/(6.4 \times 10^6)^2$		
	$= 9.77 \text{ m s}^{-2}$		
	(b) at height 0.50 times the radius of above the Earth's surface.		
	CM.		
	$g = \frac{GM}{r^2} = (6.67 \times 10^{-11})(6.0 \times 10^{24}) / (1.5 \times 6.4 \times 10^6)^2$		
	$= 4.34 \text{ m s}^{-2}$		
	Example 7D2		
	The acceleration due to gravity at the Earth's surface is 9.80 m s ⁻² . Calculate the acceleration due to gravity		
	on a planet which has the same density but twice the radius of Earth.		

MEGALECTURE www.megalecture.com

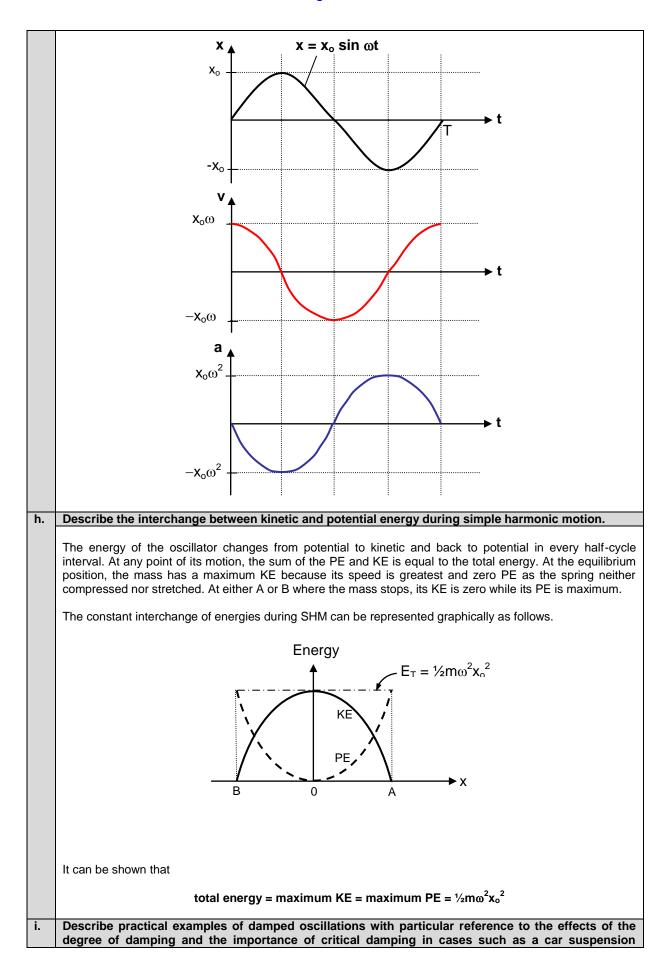
	$g = \frac{GM}{r^2}$
	$\frac{g_{P}}{g_{E}} = \frac{M_{P}r_{E}^{2}}{M_{E}r_{P}^{2}}$
	U ·
	$=\frac{\frac{4}{3}\pi r_{P}{}^{3}r_{E}{}^{2}\rho_{P}}{\frac{4}{3}\pi r_{E}{}^{3}r_{P}{}^{2}\rho_{E}}$
	$=\frac{4}{4}$ $\frac{1}{4}$ 1
	$=\frac{r_{\rm P}}{r_{\rm E}}$
	= 2
	Hence $g_P = 2 \times 9.81 = 19.6 \text{ m s}^{-2}$.
	$Hence g_{P} = 2 \times 3.01 = 13.0 \text{ m/s} \ .$
е.	Show an appreciation that on the surface of the Earth g is approximately constant and is called the
	acceleration of free fall.
	Assuming that Earth is a uniform sphere of mass M. The magnitude of the gravitational force from Earth on a particle of mass m, located outside Earth a distance r from the centre of the Earth is
	$F = \frac{GMm}{r^2}$. When a particle is released, it will fall towards the centre of the Earth, as a result of the
	gravitational force with an acceleration ag.
	i.e. , $F_G = ma_g$
	$a_g = \frac{GM}{r^2}$
	·
	Hence $a_g = g$
	Thus gravitational field strength g is also numerically equal to the acceleration of free fall.
	Example 7E1 A ship is at rest on the Earth's equator. Assuming the earth to be a perfect sphere of radius R and the acceleration due to gravity at the poles is g_0 , express its apparent weight, N, of a body of mass m in terms of m, g_0 , R and T (the period of the earth's rotation about its axis, which is one day).
	Ans:
	At the North Pole, the gravitational attraction is
	$F = \frac{GM_Em}{R^2} = mg_o$
	At the equator,
	Normal Reaction Force on ship by Earth = Gravitational attraction – centripetal force
	N = mg _o - mR ω^2
	$= mg_o - mR \left(\frac{2\pi}{T}\right)^2$
f.	Define potential at a point as the work done in bringing unit mass from infinity to the point.
	Gravitational potential at a point is defined as the work done (by an external agent) in bringing a <u>unit</u> mass from infinity to that point (without changing its kinetic energy).
g.	Solve problems by using the equation $\phi = -\frac{GM}{r}$ for the potential in the field of a point mass.
	$\phi = \frac{W}{m} = -\frac{GM}{r}$
	 Why gravitational potential values are always negative? As the gravitational force on the mass is attractive, the work done by an ext agent in bringing unit mass from infinity to any point in the field will be negative work{as the force exerted by the ext agent is opposite in direction to the displacement to ensure that ∆KE = 0}
	- Hence by the definition of <i>negative work</i> , all values of ϕ are negative.

MEGALECTUR www.megalecture.com

	Re	lation between g and ϕ :	$g = -\frac{d\phi}{dr} = -$ gradient of ϕ -r graph	{Analogy: E =-dV/dx}
	Gravitational potential energy U of a mass m at a point in the gravitational field of another mass M , is the work done in bringing that mass m {NOT: <i>unit mass,</i> or <i>a mass</i> } from infinity to that point.			
		$= \mathbf{m} \phi = -\frac{\mathbf{GMm}}{\mathbf{r}}$		
	Chang		ly if <i>g is constant</i> over the distance use: Δ U = m φ _f – m φ _i	h; \Rightarrow h<< radius of planet}
h.	Recognise the analogy between certain qualitative and quantitative aspects of gravitational and electric fields.			
		Acrosta	Electric Field	Gravitational Field
	1.	Aspects Quantity interacting with or producing the field	Charge Q	Mass M
	2.	Definition of Field Strength	Force per unit positive charge $E = \frac{F}{q}$	Force per unit mass $g = \frac{F}{M}$
	3.	Force between two <u>Point</u> Charges or Masses	Coulomb's Law:	Newton's Law of Gravitation: $F_g = G \frac{GMm}{r^2}$
	4.	Field Strength of isolated <u>Point</u> Charge or Mass	$F_{e} = \frac{Q_{1}Q_{2}}{4\pi\epsilon_{o}r^{2}}$ $E = \frac{Q}{4\pi\epsilon_{o}r^{2}}$	$g = G \frac{GM}{r^2}$
	5.	Definition of Potential	Work done in bringing a unit positive charge from infinity to the point.	Work done in bringing a unit mass from infinity to the point. W
			$V = \frac{W}{Q}$ $V = \frac{Q}{4\pi\epsilon_{o}r}$	$\phi = \frac{W}{M}$
	6.	Potential of isolated <u>Point</u> Charge or Mass	$V = \frac{Q}{4\pi\epsilon_o r}$	$\phi = -G \frac{M}{r}$
	7.	Change in Potential Energy	$\Delta U = q \Delta V$	$\Delta U = m \Delta \phi$
i.	Analyse circular orbits in inverse square law fields by relating the gravitational force to the centripetal acceleration it causes.			
			, GMm、 ,1GMm、	
		Energy of a Satellite = GPE +	$KE = (-\frac{1}{r}) + (\frac{1}{2} + \frac{1}{r})$	
		nservation of Energy,		
	-			
	Initial KE+ Initial GPE = Final KE + Final GPE $\frac{1}{2}mv_{E}^{2}$ + $(-\frac{GMm}{r})$ = 0 + 0			
	Thus escape speed, $v_E = \sqrt{\frac{2GM}{R}}$			
	Note :	Escape speed of an object is i	ndependent of its mass	
			the centripetal force is provided roviding the centripetal force be	
		Hence $\frac{GMm}{r^2} = \frac{mv^2}{r} = mr$	$\omega^2 = mr \left(\frac{2\pi}{T}\right)^2$	
	A satellite does not move in the direction of the gravitational force {ie it stays in its circular orbit} because: the gravitational force exerted by the Earth on the satellite is just sufficient to cause the centripetal acceleration but not enough to also pull it down towards the Earth.			

MEGALECT

URE


Т

	{This explains also why the Moon does not fall towards the Earth}		
j.	Show an understanding of geostationary orbits and their application.		
Geostationary satellite is one which is <u>always above a certain point on the Earth</u> (as the Earth rota its axis.)			
	For a geostationary orbit: $T = 24$ hrs, orbital radius (& height) are fixed values from the centre of the Earth, and velocity w is also a fixed value; rotates fr west to east. However, the <u>mass</u> of the satellite is <u>NOT a</u> <u>particular value</u> & hence the ke, gpe, & the centripetal force are also not fixed values {ie their values depend on the mass of the geostationary satellite.}		
	A geostationary orbit must lie in the <u>equatorial plane</u> of the earth because it <u>must</u> accelerate in a plane where the <i>centre</i> of Earth lies since the <u>net force</u> exerted on the satellite is the <u>Earth's gravitational force</u> , which is <u>directed towards the <i>centre</i> of Earth</u> .		
	{Alternatively, may explain by showing why it's impossible for a satellite in a non-equatorial plane to be geostationary.}		

Cha				
Cha	apter 8: Oscillations - Simple harmonic motion			
	- Energy in simple harmonic motion			
	- Damped and forced oscillations: resonance			
a.	Describe simple examples of free oscillations.			
	Self-explanatory			
b.	Investigate the motion of	of an oscillator using experim	ental and graphical methods.	
	Self-explanatory			
c.			d, frequency, angular frequency and phase equency and angular frequency.	
	Period	is defined as the time taken for	or one complete oscillation.	
	Frequency	is defined as the number of o	scillations per unit time,	
		$f = \frac{1}{T}$		
	Angular frequency ω :	is defined by the eqn, $\omega =$ displacement (measured in	2 π f. It is thus the rate of change of angular radians per sec)	
	Amplitude	The maximum displacement f	rom the equilibrium position.	
	Phase difference φ:		e wave is <u>out of step</u> with another wave, or how i phase with another wave particle.	
	$\phi = \frac{2\pi x}{\lambda} = \frac{t}{T} \times 2$	π {x = separation in the directio	n of wave motion between the 2 particles}	
d.	Recognise and use the equation $a = -\omega^2 x$ as the defining equation of simple harmonic motion.			
		n: An oscillatory motion in which	the acceleration {or <u>restoring force</u> } is	
			certain fixed point/ equilibrium position	
	ie $\mathbf{a} = -\omega^2 \mathbf{x}$	(Defining equation of S.H.M)		
e.	Recall and use x = x _o sin	η (ω t) as a solution to the equ	uation $a = -\omega^2 x$.	
f.	Recognise and use v = v	$v_{o}\cos(\omega t)$ and $v = \pm \omega \sqrt{x_{o}^{2} - x_{o}^{2}}$	7	
	"Time Equations"		"Displacement Equations"	
	$x = x_o \sin \omega t$	or $x = x_0 \cos(\omega t)$, etc		
	{depending on the			
	$v = \frac{dx}{dt} = \omega x_0 \cos \omega t$	{assuming x= x₀sinωt}	$v = \pm \omega \sqrt{x_0^2 - x^2}$ (In Formula List) (v - x graph is an ellipse)	
	÷.•		$a = -\omega^2 x$	
	$a = -\omega^2 x = -\omega^2 (x_0 s)$ KE = $\frac{1}{2} mv^2 = \frac{1}{2} m$	$(\omega x_o \cos \omega t)^2$	$KE = \frac{1}{2} mv^2 = \frac{1}{2} m\omega^2 (x_0^2 - x^2)$	
		11	(KE - x graph is a parabola)	
g.	Describe with graphical simple harmonic motior		displacement, velocity and acceleration during	
		1.		

MEGALECTURE www.megalecture.com

www.youtube.com/megalecture

G

Ε

Ε

	system.		
	Damping	refers to the loss of energy from an oscillating system to the environment due to dissipative forces {eg, friction, viscous forces, eddy currents}	
	Light Damping:	The system <u>oscillates</u> about the equilibrium position with <u>decreasing amplitude</u> over a period of time.	
	Critical Damping:	The system does <u>not</u> oscillate & damping is just adequate such that the system returns to its equilibrium position in the <u>shortest</u> possible time.	
	Heavy Damping:	The damping is so great that the displaced object <u>never oscillates</u> but returns to its equilibrium position <u>very very slowly</u> .	
j.	Describe practical exa	mples of forced oscillations and resonance.	
	Free Oscillation:	An oscillating system is said to be undergoing <i>free oscillations</i> if its oscillatory motion is <u>not</u> subjected to an external periodic driving force. The system oscillates at its natural freq.	
	Forced Oscillation:	In contrast to free oscillations, an oscillating system is said to undergo forced oscillations if it is subjected to an <u>input of energy from an external periodic</u> <u>driving force</u> The freq of the forced {or driven} oscillations will be <u>at the freq of the driving force</u> {called the driving frequency} ie. no longer at its own natural frequency.	
	Resonance:	A phenomenon whereby the <u>amplitude</u> of a system undergoing <u>forced</u> <u>oscillations</u> increases to a <u>maximum</u> . It occurs when <u>the frequency of the periodic driving force</u> is equal to the natural frequency of the system.	
	Effects of Damping on	Freq Response of a system undergoing forced oscillations	
	1) Resonant freq	uency decreases	
	2) Sharpness of	resonant peak decreases	
		brced oscillation decreases	
-			
k.	natural frequency of	now the amplitude of a forced oscillation changes with frequency near to the the system, and understand qualitatively the factors which determine the and sharpness of the resonance.	
	Amplitude of forced	Heavy damping f ₀	
1.		that there are some circumstances in which resonance is useful and other h resonance should be avoided.	

MEGALECTURE

Examples of Useful Purposes of Resonance

- (a) Oscillation of a child's swing.
- (b) Tuning of musical instruments.
- (c) Tuning of radio receiver Natural frequency of the radio is adjusted so that it responds resonantly to a specific broadcast frequency.
- (d) Using microwave to cook food Microwave ovens produce microwaves of a frequency which is equal to the natural frequency of water molecules, thus causing the water molecules in the food to vibrate more violently. This generates heat to cook the food but the glass and paper containers do not heat up as much.
- (e) Magnetic Resonance Imaging (MRI) is used in hospitals to create images of the human organs.
- (f) Seismography the science of detecting small movements in the Earth's crust in order to locate centres of earthquakes.

Examples of Destructive Nature of Resonance

- (a) An example of a disaster that was caused by resonance occurred in the United States in 1940. The Tarcoma Narrows Bridge in Washington was suspended by huge cables across a valley. Shortly after its completion, it was observed to be unstable. On a windy day four months after its official opening, the bridge began vibrating at its resonant frequency. The vibrations were so great that the bridge collapsed.
- (b) High-pitched sound waves can shatter fragile objects, an example being the shattering of a wine glass when a soprano hits a high note.
- (c) Buildings that vibrate at natural frequencies close to the frequency of seismic waves face the possibility of collapse during earthquakes.

SECTION III THERMAL PHYSICS

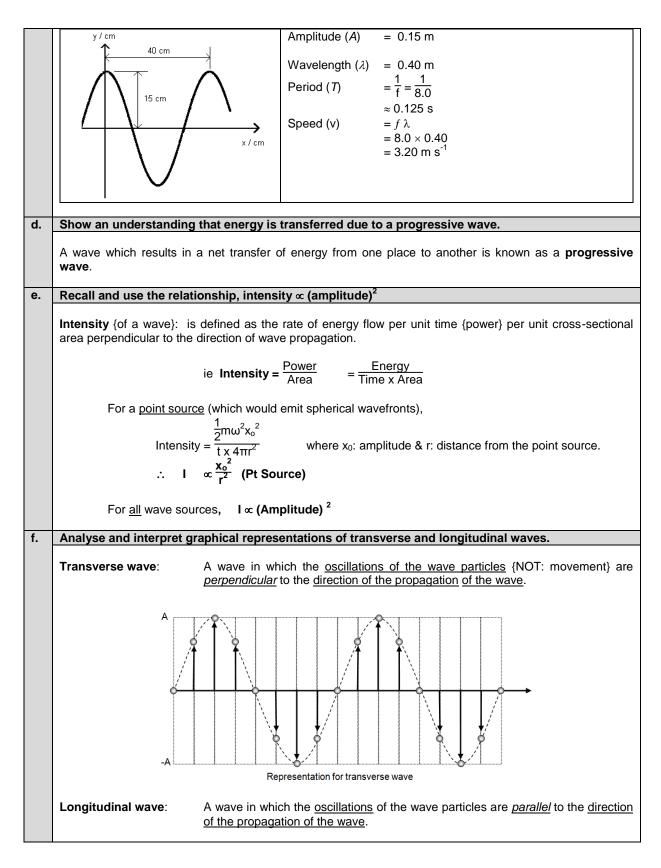
Cha	apter 9: Thermal Physics
Ona	- Internal energy
	- Temperature scales
	- Specific heat capacity
	- Specific latent heat
	 First law of thermodynamics The ideal gas equation
	- Kinetic energy of a molecule
а.	Show an understanding that internal energy is determined by the state of the system and that it can be expressed as the sum of a random distribution of kinetic and potential energies associated with the molecules of a system.
	Internal Energy: is the sum of the kinetic energy of the molecules <u>due to its random motion</u> & the pe of the molecules due to the intermolecular forces.
	<u>"Internal energy is determined by the state of the system". Explain what this means.</u> Internal energy is <u>determined by the values of the current state</u> and is <u>independent of how the state is</u> <u>arrived at</u> . Thus if a system undergoes a series of changes from one state A to another state B, its change in internal energy is the same, regardless of which path {the changes in the p & V} it has taken to get from A to B.
b.	Relate a rise in temperature of a body to an increase in its internal energy.
	Since Kinetic Energy proportional to temp, and internal energy of the system = sum of its Kinetic Energy and Potential Energy, a rise in temperature will cause a rise in Kinetic Energy and thus an increase in internal energy.
	internal energy.
c.	Show an understanding that regions of equal temperature are in thermal equilibrium.
	If two bodies are in thermal equilibrium , there is <u>no <i>net</i> flow of heat energy between them</u> and they have the <u>same temperature</u> . {NB: this <u>does not imply they must have the same <i>internal energy</i> as internal energy depends also on the <u>number of molecules</u> in the 2 bodies, which is <u>unknown</u> here}</u>
d. e.	Show an understanding that there is an absolute scale of temperature which does not depend on the property of any particular substance, i.e. the thermodynamic scale. Apply the concept that, on the thermodynamic (Kelvin) scale, absolute zero is the temperature at which all substances have a minimum internal energy.
	Thermodynamic (Kelvin) scale of temperature: theoretical scale that is <i>independent</i> of the properties of any particular substance.
	An absolute scale of temp is a temp scale which does not depend on the property of any particular substance (ie the thermodynamic scale)
	Absolute zero: Temperature at which <u>all</u> substances have a <u>minimum</u> internal energy {NOT: zero internal energy.}
f.	Convert temperatures measured in Kelvin to degrees Celsius: T / K = T / °C + 273.15.
	T/K = T/ ⁰ C + 273.15, by definition of the Celsius scale.
g.	Define and use the concept of specific heat capacity, and identify the main principles of its determination by electrical methods.
	Specific heat capacity is defined as the amount of heat energy needed to produce <u>unit temperature</u> <u>change</u> {NOT: by 1 K} for <u>unit mass {NOT: 1 kg}</u> of a substance, without causing a change in state. i.e. $c = \frac{Q}{m\Delta T}$
	ELECTRICAL METHODS
h.	Define and use the concept of specific latent heat, and identify the main principles of its determination by electrical methods.

MEGALECTUR www.megalecture.com

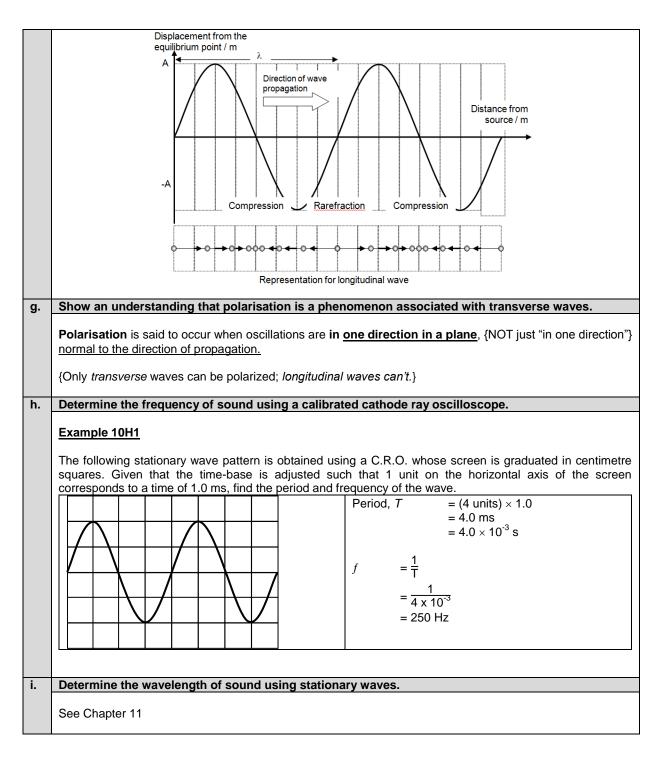
Specific latent heat of vaporisation is defined as the amount of heat energy needed to change unit mas substance from liquid phase to gaseous phase without a change of temperature. Specific latent heat of fusion is defined as the amount of heat energy needed to change unit mass substance from solid phase to liquid phase without a change of temperature i.e. $L = \frac{Q}{m}$ {for both cases of vaporisation & melting} The specific latent heat of vaporisation is greater than the specific latent heat of fusion for a given substance {N06P2Q2} During vaporisation, there is a greater increase in volume than in fusion; Thus more work is done against atmospheric pressure during vaporisation. The increase in vol also means the INCREASE IN THE (MOLECULAR) POTENTIAL ENERGY, & hence, internal energy, during vaporisation more than that during melting. Hence by 1st Law of Thermodynamics, heat supplied during vaporisation more than that during melting; hence $I_V > I_f$ {since Q = ml = $\Delta U - W$ } {Note: the use of comparative terms: greater, more, and > 1. 2. the increase in internal energy is due to an increase in the PE, NOT KE of molecules 3. the system here is NOT to be considered as an ideal gas system (Similarly, you need to explain why, when a liq is boiling, thermal energy is being supplied, and yet, the temp of the liq does not change. (N97P3Q5, [4 m]) Explain using a simple kinetic model for matter why i. Melting and boiling take place without a change in temperature, The specific latent heat of vaporisation is higher than specific latent heat of fusion for the ii. same substance, iii. Cooling effect accompanies evaporation. Evaporation Melting Boiling Occurrence On the surface, Throughout the substance, at fixed temperature and pressure at all temperatures Spacing(vol) & Increase slightly Increase significantly PE of molecules Temperature & Remains constant during process Decrease for hence KE of remaining liquid molecules j. Recall and use the first law of thermodynamics expressed in terms of the change in internal energy, the heating of the system and the work done on the system. First Law of Thermodynamics: The increase in internal energy of a system is equal to the sum of the heat supplied to the system and the work done on the system. ie $\Delta U = W + Q$ where ΔU: Increase in internal energy of the system Q: Heat supplied to the system W: work done on the system {Need to recall the sign convention for all 3 terms} Work is done by a gas when it expands; work is done on a gas when it is compressed. W = area under pressure-volume graph. For constant pressure {isobaric process}, Work done = pressure $\times \Delta Volume$ **Isothermal process**: a process where $T = \text{const} \{\Rightarrow \Delta U = 0 \text{ for ideal gas} \}$

> www.youtube.com/megalecture GALECTU

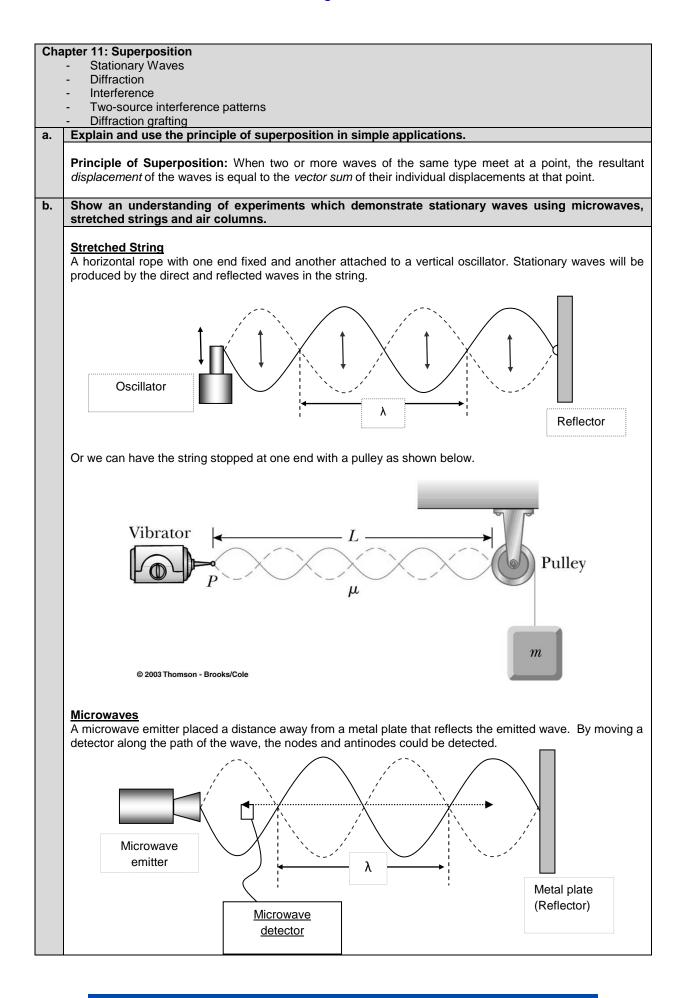
	ΔU for a cycle = 0 {since U \propto T, & ΔT = 0 for a cycle }		
k.	Recall and use the ideal gas equation pV = nRT where n is the amount of gas in moles.		
	Equation of state for an ideal gas: p V = n R T, where T is in Kelvin {NOT: ⁰ C}, n: no. of moles. p V = N k T, where N: no. of molecules, k:Boltzmann const Ideal Gas: a gas which obeys the ideal gas equation pV = nRT <u>FOR ALL VALUES OF P, V & T</u>		
I.	Show an understanding of the significance of the Avogadro constant as the number of atoms in		
	0.012 kg of carbon-12.		
	Avogadro constant: defined as the number of atoms in 12 g of carbon-12. It is thus the number of particles (atoms or molecules) in one mole of substance.		
m.	Use molar quantities where one mole of any substance is the amount containing a number of particles equal to the Avogadro constant.		
	?		
n.	Recall and apply the relationship that the mean kinetic energy of a molecule of an ideal gas is proportional to the thermodynamic temperature to new situations or to solve related problems.		
	For an <u>ideal gas</u> , internal energy U = Sum of the KE of the molecules <u>only</u> {since PE = 0 for ideal gas}		
	ie $\mathbf{U} = \mathbf{N} \mathbf{x}^{1/2} \mathbf{m} \langle \mathbf{c}^2 \rangle = \mathbf{N} \mathbf{x} \frac{3}{2} \mathbf{k} \mathbf{T}$ {for monatomic gas}		
	- U depends on T and number of molecules N.		
	- $\mathbf{U} \propto \mathbf{T}$ for a given number of molecules		
	Ave KE of a molecule, $\frac{1}{2}$ m <c<sup>2> \propto T { T in K: not ⁰C }</c<sup>		

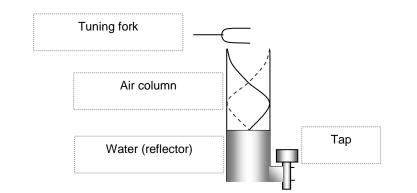


SECTION IV WAVES



Cha	Charter 40: Ways Metion			
Cna	Chapter 10: Wave Motion - Progressive Waves			
	- Transverse and Longitudinal Waves - Polarisation			
- Determination of frequency and wavelength			nd wavelength	
a. Show an understanding and use the terms displacement, amplitude, phase difference, wavelength and speed.				
	(a)	Displacement (y):	Position of an oscillating particle from its equilibrium position.	
	(b)	Amplitude (y ₀ or A):	The maximum magnitude of the displacement of an oscillating particle from its equilibrium position.	
	(c)	Period (T):	Time taken for a particle to undergo one complete cycle of oscillation.	
	(d)	Frequency (f):	Number of oscillations performed by a particle per unit time.	
	(e)	Wavelength (λ) :	For a progressive wave, it is the distance between any two <u>successive</u> particles that are <u>in phase</u> , e.g. it is the distance between 2 consecutive crests or 2 troughs.	
	(f)	Wave speed (v):	The speed at which the waveform travels in the direction of the propagation of the wave.	
	(g)	Wave front:	A line or surface joining points which are at the same state of oscillation, i.e. in phase, e.g. a line joining crest to crest in a wave.	
	(h)	Ray:	The path taken by the wave. This is used to indicate the direction of wave propagation. Rays are always at right angles to the wave fronts (i.e. wave fronts are always perpendicular to the direction of propagation).	
b.	Dedu	ce, from the definitions of	speed, frequency and wavelength, the equation v = $f\lambda$	
	From	the definition of speed,	Speed = $\frac{\text{Distance}}{\text{Time}}$	
	A wav	e travels a distance of one	wavelength, λ , in a time interval of one period, <i>T</i> .	
		equency, f, of a wave is equ	1	
			۱ ک	
			$=(\frac{1}{T})\lambda$	
	Hence	e, v = fλ	$= f\lambda$	
с.	Recal	I and use the equation v =	= fλ	
		_		
	Example 10C1 A wave travelling in the positive <i>x</i> direction is showed in the figure. Find the amplitude, wavelength, perio and speed of the wave if it has a frequency of 8.0 Hz.			





/ww.youtube.com/megalectu

<u>Air column</u>

A tuning fork held at the mouth of a open tube projects a sound wave into the column of air in the tube. The length of the tube can be changed by varying the water level. At certain lengths of the tube, the air column resonates with the tuning fork. This is due to the formation of stationary waves by the <u>incident</u> and <u>reflected</u> sound waves at the water surface.

c. Explain the formation of a stationary wave using a graphical method, and identify nodes and antinodes.

Stationary (Standing) Wave) is one

- whose waveform/wave profile does not advance {move},
- where there is no net transport of energy, and
- where the positions of antinodes and nodes do not change (with time).

A stationary wave is formed when two <u>progressive</u> waves of the same <u>frequency</u>, <u>amplitude</u> and <u>speed</u>, travelling in <u>opposite directions</u> are superposed. {Assume boundary conditions are met}

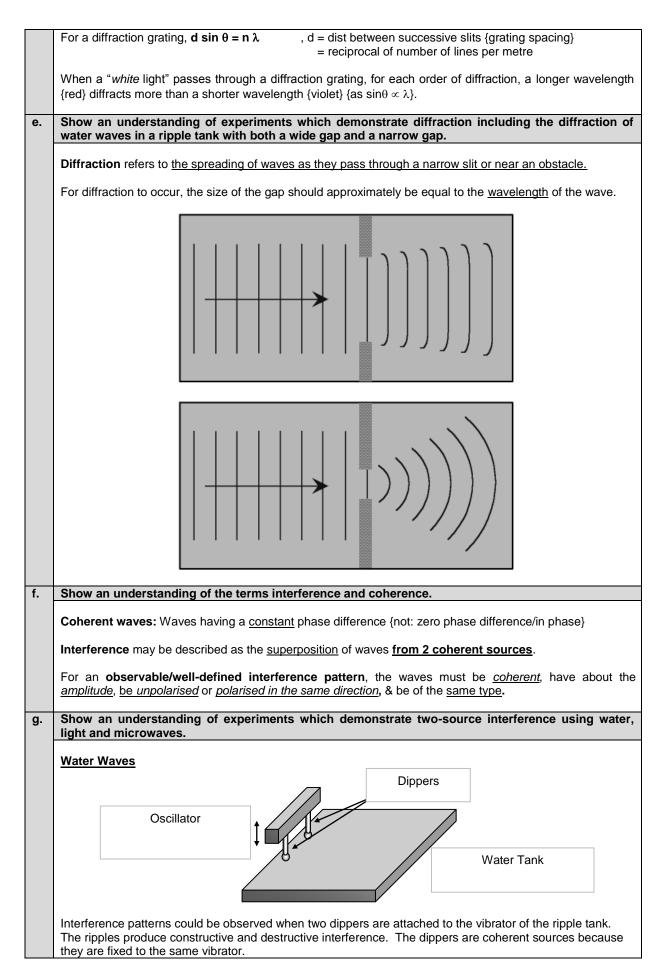
	Stationary Waves	Progressive Waves
Amplitude	Varies from maximum at the anti-nodes to	Same for all particles in the wave
	zero at the nodes.	(provided no energy is lost).
Wavelength	Twice the distance between a pair of	The distance between two consecutive
	adjacent nodes or anti-nodes.	points on a wave, that are in phase.
Phase	Particles in the same segment/ between 2	All particles within one wavelength have
	adjacent nodes, are in phase. Particles in	different phases.
	adjacent segments are in anti-phase.	
Wave Profile	The wave profile does not advance.	The wave profile advances.
Energy	No energy is transported by the wave.	Energy is transported in the direction of
		the wave.

Node is a region of destructive superposition where the waves <u>always</u> meet <u>out of phase by π radians</u>. Hence displacement here is <u>permanently zero</u> {or minimum}.

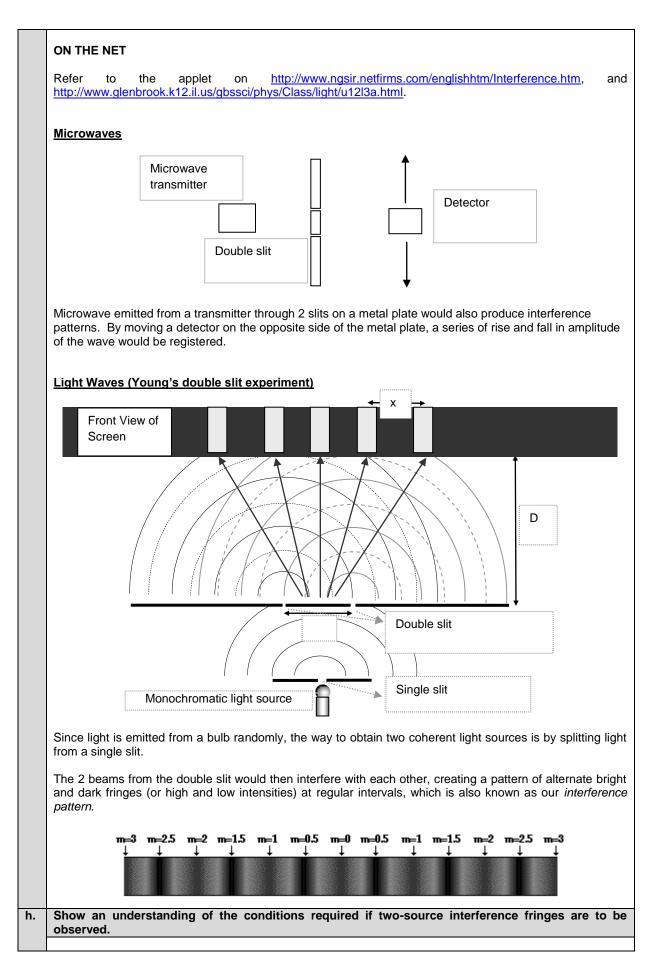
Antinode is a region of constructive superposition where the waves <u>always</u> meet <u>in phase</u>. Hence a particle here <u>vibrates</u> with <u>maximum amplitude</u> {but it is NOT a pt with a *permanent* large displacement!}

Dist between 2 successive nodes/antinodes = $\frac{\Lambda}{2}$

<u>Max pressure change</u> occurs at the <u>nodes</u> {NOT the antinodes} because every node changes fr being a pt of compression to become a pt of rarefaction {half a period later}


d. Explain the meaning of the term diffraction.

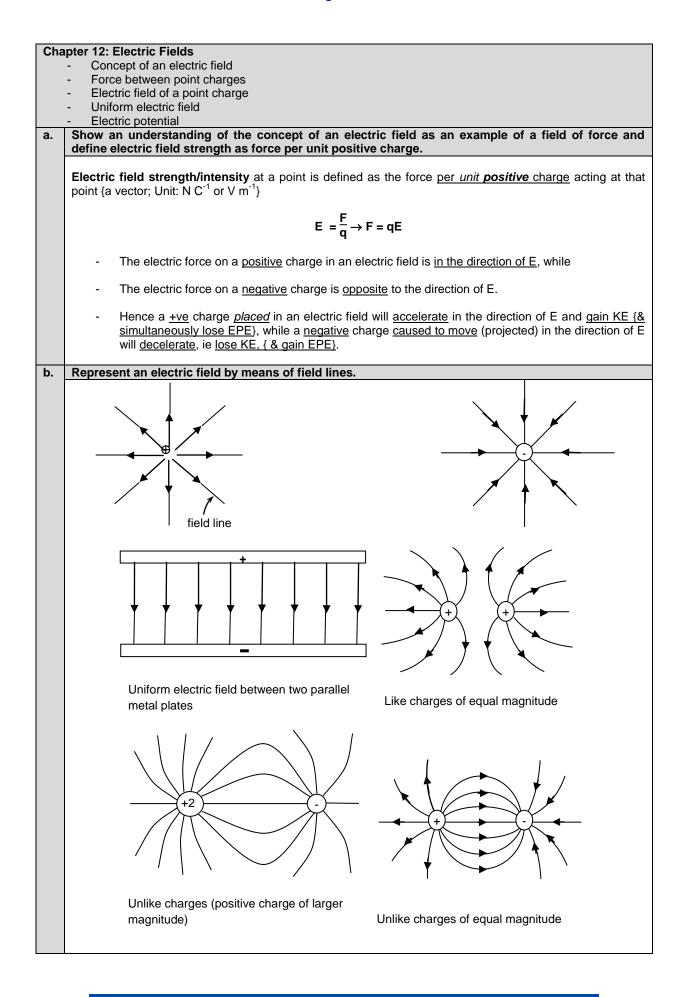
j. Recall and solve problems by using the formula $dsin\theta = n\lambda$ and describe the use of a diffraction grating to determine the wavelength of light. (The structure and use of the spectrometer is not required.)


Diffraction: refers to the <u>spreading</u> {or bending} of waves when they pass through an <u>opening {gap}</u>, or <u>round an obstacle</u> (into the "shadow" region). {Illustrate with diag}

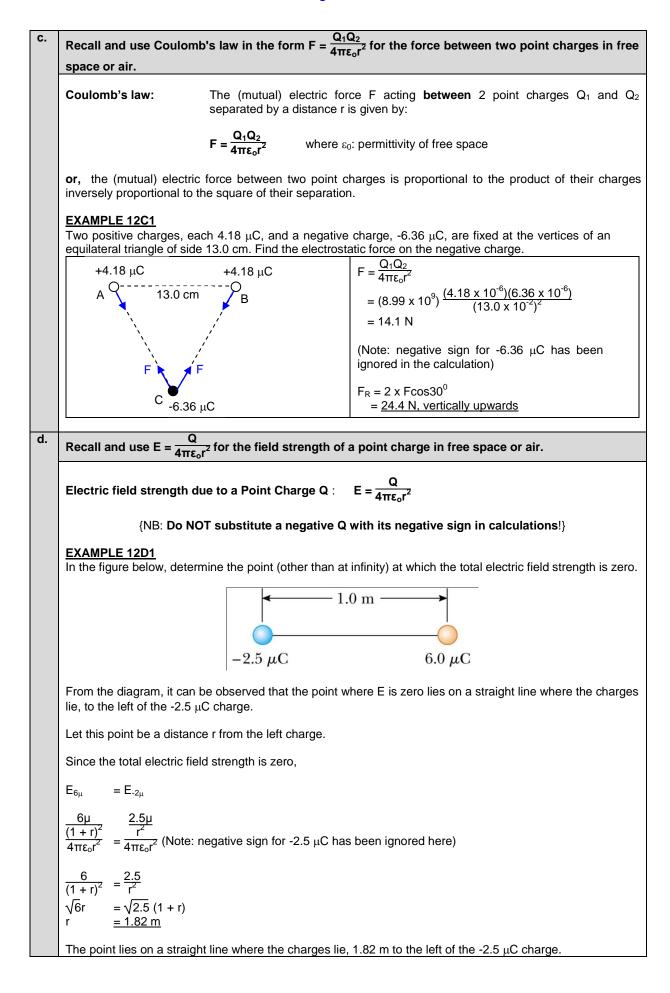
For significant diffraction to occur, the size of the gap $\approx \lambda$ of the wave

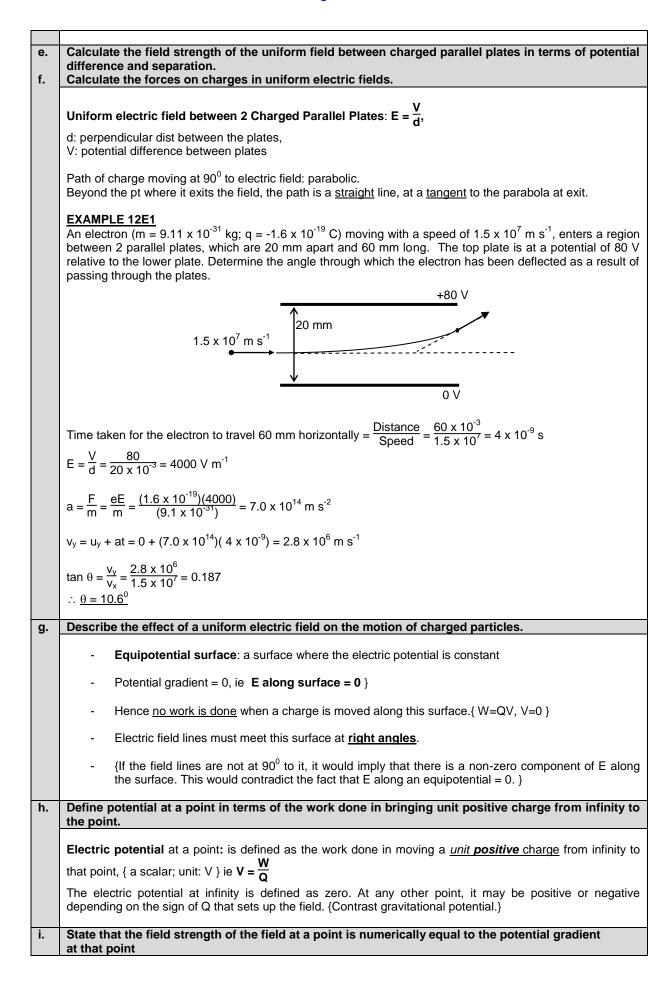
www.youtube.com/megalectur

www.youtube.com/megalecture LΕ


G

	Condition for Constructive Interference at a pt P:
	phase difference of the 2 waves at P = 0 {or 2π , 4π , etc}
	Thus, with 2 <i>in-phase</i> sources, * implies path difference = $n\lambda$; with 2 <i>antiphase</i> sources: path difference = $(n + \frac{1}{2})\lambda$
	Condition for Destructive Interference at a pt P:
	phase difference of the 2 waves at P = π { or 3π , 5π , etc }
	With 2 <i>in-phase</i> sources, + implies path difference = (n+ $\frac{1}{2} \lambda$), with 2 <i>antiphase</i> sources: path difference = n λ
i.	Recall and solve problems using the equation $\lambda = \frac{\lambda D}{a}$ for double-slit interference using light.
i.	Recall and solve problems using the equation $\lambda = \frac{\lambda D}{a}$ for double-slit interference using light. Fringe separation $x = \frac{\lambda D}{a}$, if a< <d <i="" double="" interference="" of="" only="" slit="" to="" young's="" {applies="">light, le, NOT for microwaves, sound waves, water waves}</d>
i.	Fringe separation $\mathbf{x} = \frac{\lambda \mathbf{D}}{\mathbf{a}}$, if a< <d <i="" double="" interference="" of="" only="" slit="" to="" young's="" {applies="">light,</d>


SECTION V ELECTRICITY & MAGNETISM



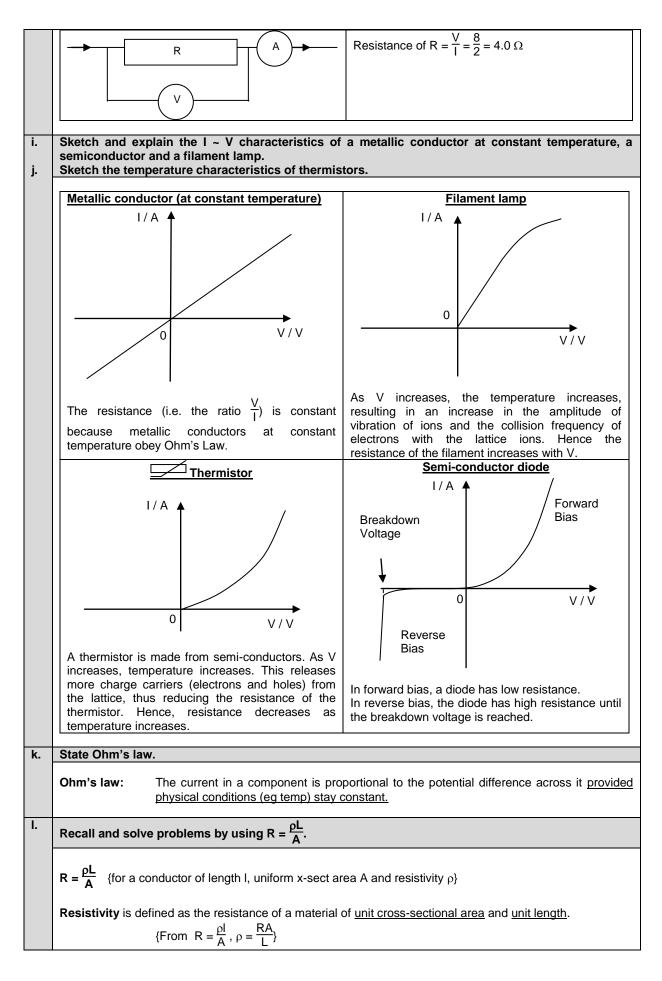
ww.youtube.com/megalecture

GA LECTUR

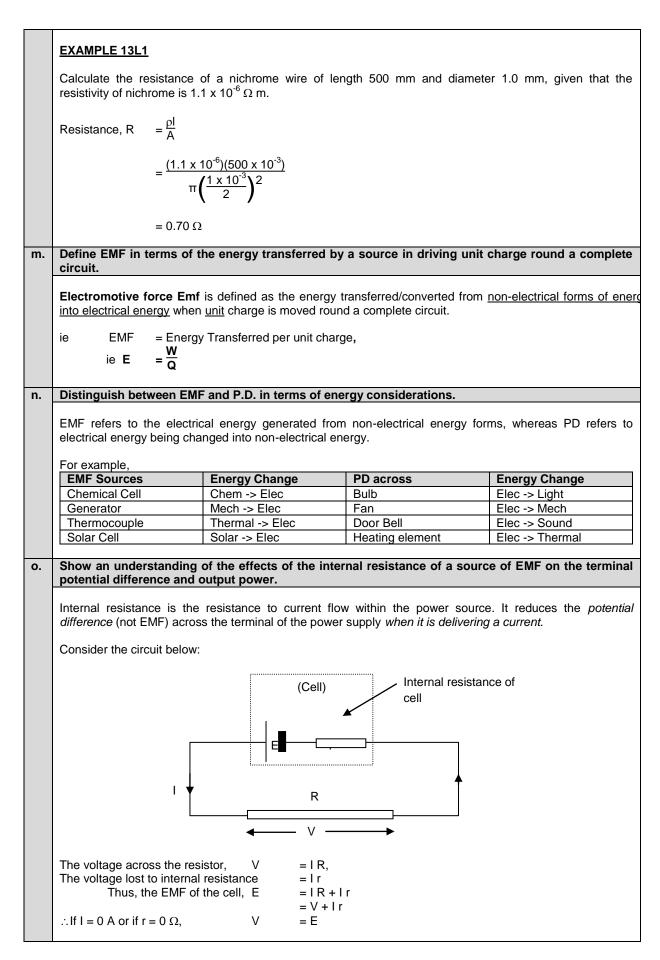
www.voutube.com/megalecture

www.youtube.com/megalecture

	Relation between E and V: $E = -\frac{dV}{dr}$ i.e. The electric field strength at a pt is numerically equal to the potential gradient at that pt. NB: Electric field lines point in direction of <u>decreasing</u> potential {ie from high to low pot}.
j.	Use the equation V = $\frac{Q}{4\pi\epsilon_0 r}$ for the potential in the field of a point charge.
	Electric potential energy U of a charge Q at a pt where the potential is V: $U = QV$ \rightarrow Work done W on a charge Q in moving it across a pd ΔV : $W = Q \Delta V$
	Electric Potential due to a <i>point</i> charge Q : $V = \frac{Q}{4\pi\epsilon_0 r}$ {in List of Formulae}
	{NB: Substitute Q with its sign}
k.	Recognise the analogy between certain qualitative and quantitative aspects of electric field and gravitational fields.
	See 7h

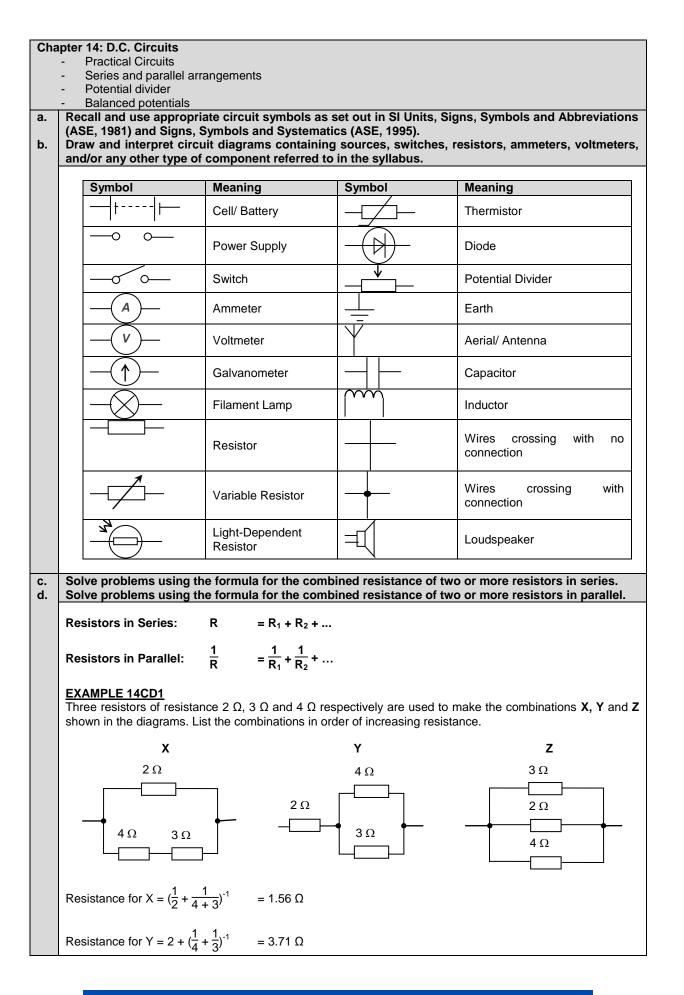


	conter 12: Current of Electricity			
Cha	pter 13: Current of Electricity Electric current			
	- Potential difference			
	 Resistance and Resistivity Sources of electromotive force 			
a.	- Sources of electromotive force Show an understanding that electric current is the rate of flow of charged particles.			
a.	Show an understanding that electric current is the rate of now of charged particles.			
	Electric current is the rate of flow of <i>charge.</i> {NOT: charged particles}			
b.	Define charge and coulomb.			
	Electric charge Q passing a point is defined as the product of the (steady) current at that point and the time for which the current flows, ie $Q = I t$			
	One coulomb is defined as the charge flowing per <u>second</u> pass a point at which the current is <u>one ampere.</u>			
c.	Recall and solve problems using the equation $Q = It$.			
	EXAMPLE 13C1 An ion beam of singly-charged Na ⁺ and K ⁺ ions is passing through vacuum. If the beam current is 20μ A, calculate the total number of ions passing any fixed point in the beam per second. (The charge on each ion is 1.6×10^{-19} C.)			
	Current, $I = \frac{Q}{t} = \frac{Ne}{t}$ where N is the no. of ions and e is the charge on one ion.			
	No. of ions per second $=\frac{N}{t}$			
	$=\frac{1}{e}$			
	$=\frac{20 \times 10^{-6}}{1.6 \times 10^{-19}}$			
	Ho X To			
	$= 1.25 \times 10^{-14}$			
d.	Define potential difference and the volt.			
u .				
	Potential difference is defined as the energy transferred <u>from electrical energy to other forms of energy</u> when <u>unit</u> charge passes through an electrical device, ie $V = \frac{W}{Q}$			
	P. D. = Energy Transferred / Charge = Power / Current or, is the ratio of the power supplied to the device to the current flowing, ie $V = \frac{P}{I}$			
	The volt: is defined as the potential difference between 2 pts in a circuit in which <u>one joule of energy is</u> <u>converted</u> from electrical to non-electrical energy when <u>one coulomb</u> passes from 1 pt to the other, ie 1 volt = One joule per coulomb			
	Difference between Potential and Potential Difference (PD): The potential at a point of the circuit is due to the amount of charge present along with the energy of the charges. Thus, the potential along circuit drops from the positive terminal to negative terminal, and potential differs from points to points.			
	Potential Difference refers to the difference in potential between any given two points. For example, if the potential of point A is 1 V and the potential at point B is 5 V, the PD across AB , or V _{AB} , is 4 V. In addition, when there is no energy loss between two points of the circuit, the potential of these points is same and thus the PD across is 0 V.			
e.	Recall and solve problems by using V = $\frac{W}{Q}$			
	EXAMPLE 13E1 A current of 5 mA passes through a bulb for 1 minute. The potential difference across the bulb is 4 V.			


MEGALECTUR www.megalecture.com

	Calculate		
	(a) The amount of charge passing through the bulb in 1 minute. Charge Q = I t		
	$= 5 \times 10^{-3} \times 60$		
	= 0.3 C		
	(b) The work done to operate the bulb for 1 minute. W		
	Potential difference across the bulb = $\frac{W}{Q}$		
	4 $=\frac{W}{0.3}$		
	Work done to operate the bulb for 1 minute $= 0.3 \times 4$		
	= 1.2 J		
f.	Recall and solve problems by using $P = VI$, $P = I^2R$.		
	\mathcal{N}^2		
	Electrical Power, P = V I = I ² R = $\frac{V^2}{R}$		
	{Brightness of a lamp is determined by the power dissipated, NOT: by V, or I or R alone}		
	EXAMPLE 13F1		
	A high-voltage transmission line with a resistance of 0.4 Ω km ⁻¹ carries a current of 500 A. The line is at a potential of 1200 kV at the power station and carries the current to a city located 160 km from the power		
	station. Calculate		
	(a) the power loss in the line		
	(a) the power loss in the line.		
	The power loss in the line P = $I^2 R$ = $500^2 \times 0.4 \times 160$		
	$= 500 \times 0.4 \times 160$ = 16 MW		
	(b) the fraction of the transmitted power that is lost.		
	The total power transmitted $= I V$ = 500 × 1200 × 10 ³		
	$= 500 \times 1200 \times 10^{\circ}$ = 600 MW		
	The fraction of power loss $=\frac{16}{600}$		
	= 0.267		
	Define resistance and the ohm.		
g.			
	Resistance is defined as the ratio of the potential difference across a component to the current flowing		
	through it, ie $\mathbf{R} = \frac{\mathbf{v}}{\mathbf{I}}$		
	{It is NOT <u>defined</u> as the gradient of a V-I graph; however for an <u>ohmic</u> conductor, its resistance <u>equals</u> the gradient of its V-I graph as this graph is a straight line which passes through the origin}		
	The Ohm: is the resistance of a resistor if there is a current of 1 A flowing through it when the pd across it is $1 \sqrt{10} = 0$ no yelt per amount		
	is 1 V, ie, 1 Ω = One volt per ampere		
h.	Recall and solve problems by using V = IR.		
	EXAMPLE 13H1		
	In the circuit below, the voltmeter reading is 8.00 V and the ammeter reading is 2.00 A. Calculate the		
	resistance of R.		

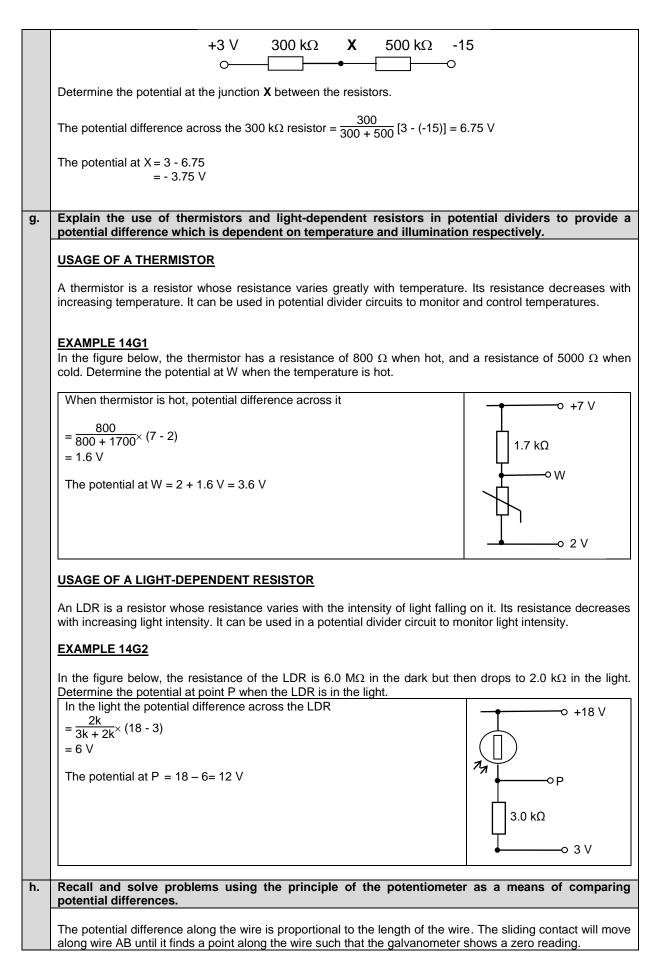
MEGALECTUR www.megalecture.com



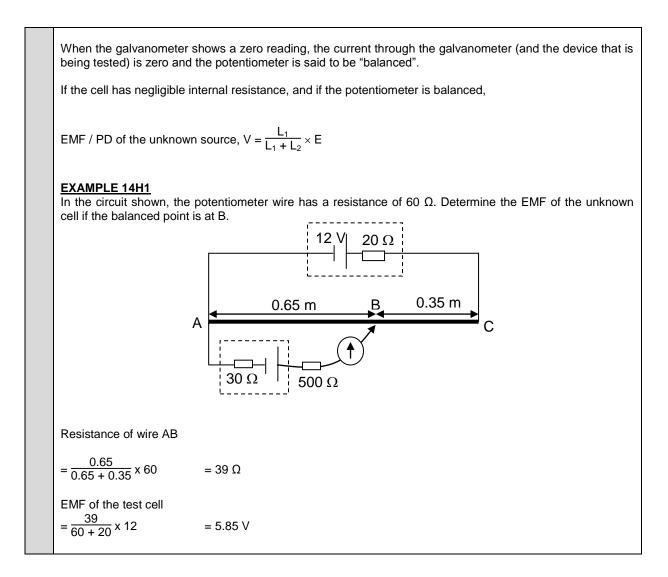
www.youtube.com/megalecture

www.youtube.com/megalecture

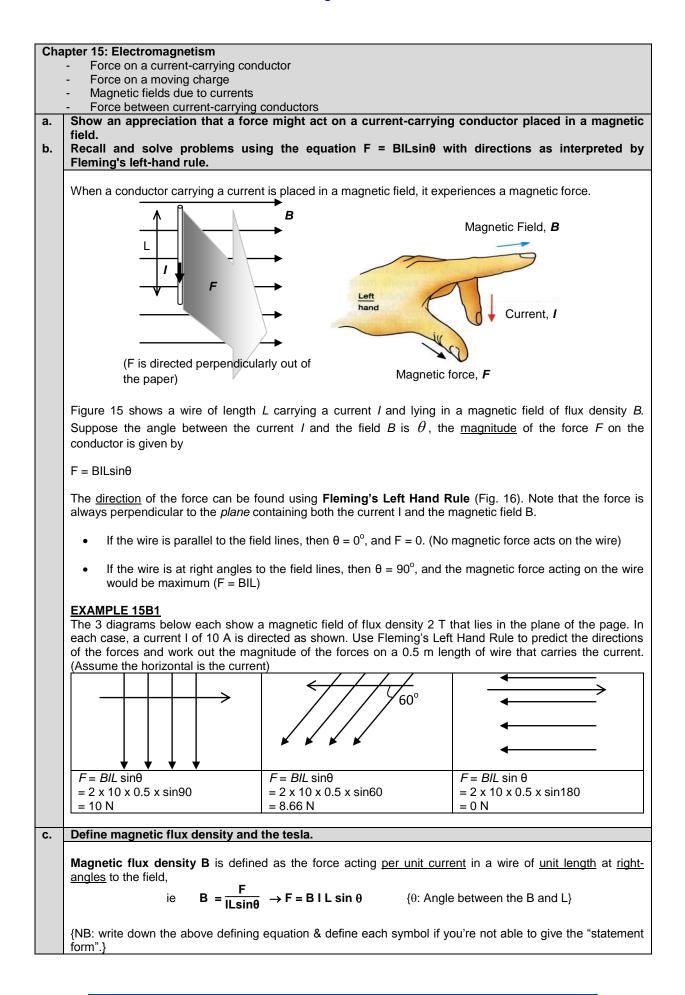
A LECT

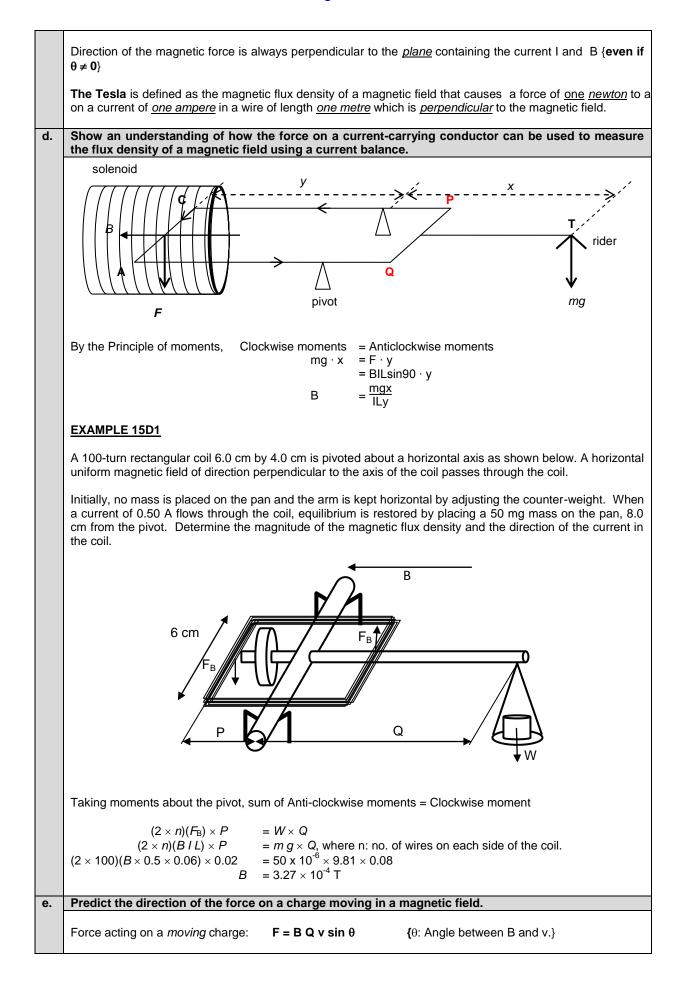


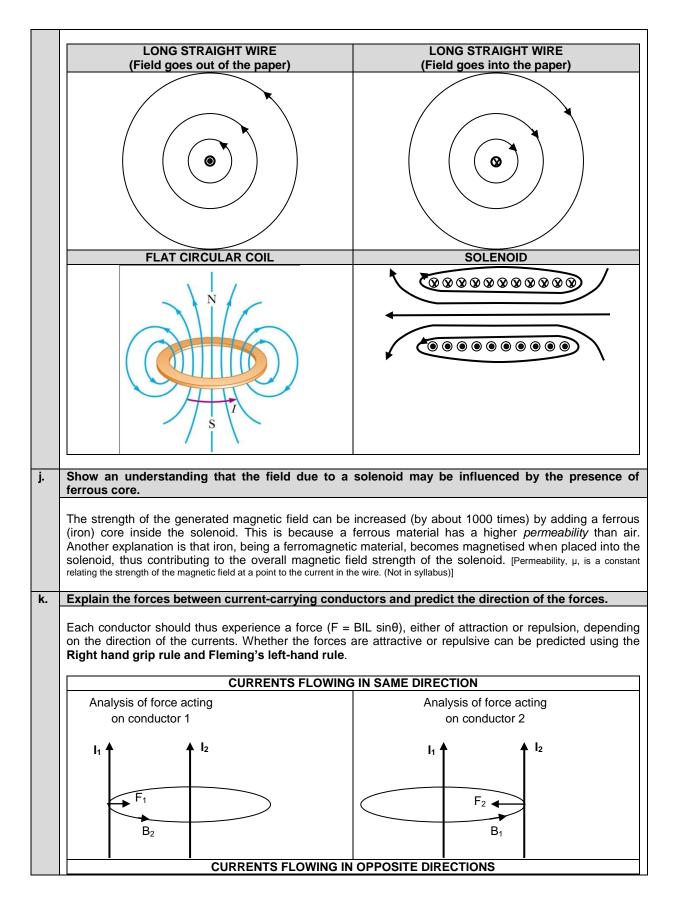
www.youtube.com/megalecture


A L E C T

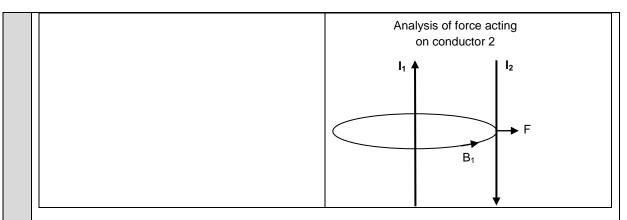
Resistance for Z = $(\frac{1}{3} + \frac{1}{2} + \frac{1}{4})^{-1}$ = 0.923 Ω Therefore, the combination of resistors in order of increasing resistance is Z X Y. Solve problems involving series and parallel circuits for one source of e.m.f. e. EXAMPLE 14E1 **E.g. 4** Referring to the circuit drawn, determine the value of I₁, I and R, the combined resistance in the circuit $E = I_1 (160) = I_2 (4000) = I_3 (32000)$ 2 V $= \frac{2}{160} = 0.0125 \text{ A}$ $= \frac{2}{4000} = 5 \times 10^{-4} \text{ A}$ $= \frac{2}{32000} = 6.25 \times 10^{-5} \text{ A}$ I_1 **160** Ω 1 I_2 I I₃ 4000 Ω 12 Since $I = I_1 + I_2 + I_3$, I = 13.1 mAApplying Ohm's Law, $R = \frac{2}{13.1 \times 10^{-3}}$ 32000 Ω I_3 = 153 Ω EXAMPLE 14E2 A battery with an EMF of 20 V and an internal resistance of 2.0 Ω is connected to resistors R₁ and R₂ as shown in the diagram. A total current of 4.0 A is supplied by the battery and R₂ has a resistance of 12 Ω. Calculate the resistance of R_1 and the power supplied to each circuit component. $E - I r = I_2 R_2$ 2Ω $20 - 4(2) = I_2(12)$ $I_2 = 1A$ 20 V Therefore, $I_1 = 4 - 1 = 3 A$ 4 A R_1 $E - Ir = I_1 R_1$ 12 = 3 R₁ $R_1 = 4$ Therefore. R_2 = $(I_1)^2 R_1$ = 36 W Power supplied to R₁ Power supplied to R₂ $(I_2)^2 R_2$ = 12 W Show an understanding of the use of a potential divider circuit as a source of variable p.d. f. For potential divider with 2 resistors in series, Potential drop across R₁, $V_1 = \frac{R_1}{R_1 + R_2} X PD$ across R₁ & R₂ Potential drop across R₂, $V_1 = \frac{R_2}{R_1 + R_2} X PD$ across R₁ & R₂ EXAMPLE 14F1 Two resistors, of resistance 300 k Ω and 500 k Ω respectively, form a potential divider with outer junctions maintained at potentials of +3 V and -15 V.







ww.youtube.com/megalectu



	The <u>direction</u> of this force may be found by using Fleming's left hand rule. The angle θ determines the type of path the charged particle will take when moving through a uniform magnetic field:				
	• If $\theta = 0^{\circ}$, the charged particle takes a straight path since it is not deflected ($F = 0$)				
	• If $\theta = 90^{\circ}$, the charged particle takes a circular path since the force at every point in the path is perpendicular to the motion of the charged particle.				
	Since F is <u>always</u> be <u>perpendicular</u> to v {even if $\theta \neq 0$ },				
	the magnetic force can provide the centripetal force, $\rightarrow Bqv = \frac{mv^2}{r}$				
f.	Recall and solve problems using F = BQv sinθ.				
	EXAMPLE 15F1				
	An electron moves in a circular path in vacuum under the influence of a magnetic field.				
	x x <u>x</u> e x x				
	x x x x x x x x x x x x x x x x x x x				
	x x x x				
	x x x x x				
	The radius of the path is 0.010 m and the flux density is 0.010 T. Given that the mass of the electron is 9.11 x 10^{-31} kg and the charge on the electron is -1.6×10^{-19} C, determine				
	(i) whether the motion is clockwise or anticlockwise;				
	The magnetic force on the electron points towards the centre of the circular path; hence using Fleming's left hand rule, we deduce that the current I points to the left. The electron must be moving clockwise.				
	(ii) the velocity of the electron.				
	mv^2				
	$v = \frac{Bqr}{m}$				
	$=\frac{(0.010)(1.6 \times 10^{-19})(0.010)}{9.11 \times 10^{-31}}$				
	$= 1.76 \times 10^7 \text{ m s}^{-1}$				
g.	Describe and analyse deflections of beams of charged particles by uniform electric and uniform magnetic fields.				
	Lies Flowing's Loft Liend Dule to encluse, then each Developic Matien to encluse				
	Use Fleming's Left Hand Rule to analyse, then apply Parabolic Motion to analyse.				
h.	Explain how electric and magnetic fields can be used in velocity selection for charged particles.				
	Crossed-Fields in Velocity Selector:				
	A setup whereby an E-field and a B-field are <u>perpendicular</u> to each other such that they exert <u>equal & opposite forces</u> on a moving charge {if the velocity is "a certain value"}				
	I.e., if Magnetic Force = Electric Force B q v = q E				
	$v = \frac{E}{B}$				
	В				
	Only particles with speed = $\frac{E}{B}$ emerge from the cross-fields <u>undeflected</u> .				
	For particles with speed > $\frac{E}{B}$, Magnetic Force > Electric Force				
	For particles with speed $< \frac{E}{B}$, Magnetic Force $<$ Electric Force				
i.	Sketch flux patterns due to a long straight wire, a flat circular coil and a long solenoid.				

MEGALECTUR www.megalecture.com

www.youtube.com/megalecture

EXAMPLE 15K1

A long length of aluminium foil ABC is hung over a wooden rod as shown below. A large current is momentarily passed through the foil in the direction ABC, and the foil moves.

(i) Draw arrows to indicate the directions in which AB and BC move

Since currents in AB and BC are 'unlike' currents (they are flowing in opposite directions), the two foil sections AB and BC will repel each other.

(ii) Explain why the foil moves in this way

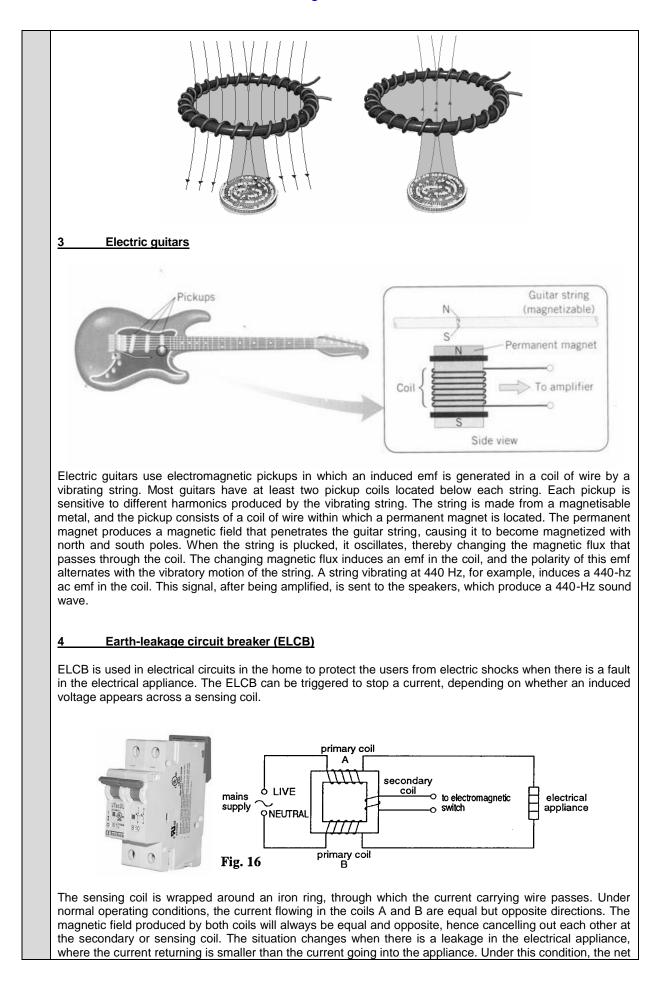
The current in the left foil AB produces a magnetic field in the other (BC). According to the Right Hand Grip Rule & Fleming's Left Hand Rule, the force on BC is away from and perpendicular to AB. By a similar consideration, the force on AB is also away from BC. Thus the forces between the foils are repulsive.

Cha	apter 16: Electromagnetic Induction - Magnetic flux			
а.	Laws of electromagnetic induction Define magnetic flux and the weber.			
a.				
	Electromagnetic induction refers to the phenomenon where an emf is induced when the magnetic flux linking conductor changes.			
	Magnetic Flux is defined as the product of the magnetic flux density and the area <u>normal</u> to the field throug which the field is passing. It is a scalar quantity and its S.I. unit is the weber (Wb).			
	$\phi = B A$			
	The Weber is defined as the magnetic flux if a flux density of <u>one</u> tesla passes <u>perpendicularly</u> through a area of <u>one square metre</u> .	an		
b.	Recall and solve problems using ϕ = BA.			
	EXAMPLE 16B1 A magnetic field of flux density 20 T passes down through a coil of of wire, making an angle of 60° to the pla of the coil as shown. The coil has 500 turns and an area of 25 cm ² . Determine:	ane		
	(i) the magnetic flux through the coil $\phi = B A$ $= 20 (\sin 60^{\circ}) 25 \times 10^{-4}$ $= 0.0433 Wb$			
	(ii) the flux linkage through the coil	*		
	Φ = N ϕ = 500 × 0.0433 = 21.65 Wb			
с.	Define magnetic flux linkage.			
	Magnetic Flux Linkage is the product of the magnetic flux passing through a coil and the number of turns the coil.	s of		
	$\Phi = N \phi = N B A$			
d.	Infer from appropriate experiments on electromagnetic induction:			
	i. That a changing magnetic flux can induce an e.m.f. in a circuit,			
	In the set up shown above, when the switch S connected to coil A is closed, the galvanometer need connected to coil B moves to 1 side momentarily. And when the switch S is opened, the galvanometer needle moves to the other side momentarily.	∍dle		
	At the instant when switch S is either opened or closed, there is a change in magnetic flux in coil A.			
	The movement in the needle of the galvanometer indicates that when there is a change in magn flux in coil A, a current passes through coil B momentarily. This suggests that an EMF is generated			

MEGALECTURE www.megalecture.com

		coil B momentarily.
	ii.	That the direction of the induced e.m.f. opposes the change producing it,
		See below
	iii.	The factors affecting the magnitude of the induced e.m.f.
		When a magnet is pushed into a coil as shown, the galvanometer deflects in one direction momentarily.
		When the magnet is not moving, the galvanometer shows no reading.
		When the magnet is withdrawn from the coil, the galvanometer deflects in the opposite direction momentarily.
		When the magnet is moved, its field lines are being "cut" by the coil. This generates an induced EMF in the coil that produces an induced current that flows in the coil, causing the deflection in the ammeter.
		The magnitude of the deflection depends on the magnetic field density B, the speed of motion v of the magnet, and the number of turns N in the coil.
е.	Reca	II and solve problems using Faraday's law of electromagnetic induction and Lenz's law.
		day's Law nagnitude of <i>induced</i> EMF is directly proportional/equal to the rate of <u>change</u> of <i>magnetic flux-linkage</i> .
	$ \mathbf{E} = \frac{\mathrm{d}NBA}{\mathrm{d}t}$	
		lirection of the induced EMF is such that <u>its effects</u> oppose the <u>change which causes it</u> , or The induced nt in a closed loop must flow in such a direction that its effects opposes the flux change {or change}
	Expla	MPLE 16E1 iin how Lenz's Law is an example of the law of conservation of energy: rate with diagram of a coil "in a complete circuit", bar magnet held in hand of a person {= external t)}
	-	As the ext agent causes the magnet to approach the coil, by Lenz's law, a current is induced in such a direction that the coil repels the approaching magnet.
	-	Consequently, work has to be done by the external agent to overcome this opposition, and
- It is this work done which is the source of the electrical energy {Not: induced emf}		It is this work done which is the source of the electrical <u>energy</u> {Not: induced emf}
	For a	straight conductor "cutting across" a B-field: E = B L vsinθ
	For a	coil rotating in a B-field with angular frequency ω:

MEGALECTUR www.megalecture.com

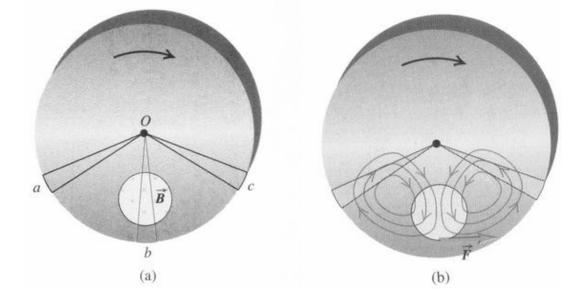

&	E = N B A ω cos ω t, E = N B A ω sin ω t,	if φ = BAsinωt if φ = BAcosωt	
{Wheth	her ϕ = BAsin ω t, or = BAcos	ωt, would depend	on the initial condition}
The in	duced EMF is the <u>negative</u>	of the gradient of	the $\phi \sim t$ graph {since E = $-\frac{dN\phi}{dt}$ }
\rightarrow the	graphs of E vs t & of vs t,	for the <u>rotating coi</u>	have a phase difference of 90° .
Explai	in simple applications of e	electromagnetic	induction.
Backg	round Knowledge		
Eddy	Currents		
	currents are currents induced in tic field or metals that are exposed to		
Consid	der a solid metallic cylinder rotating in	a B-field as shown.	
(a)	A force resisting the rotation v shown.	vould be generated as	
(b)	Heat would be generated by cylinder.	the induced current in	F
insulat	A of "coins" with insulation betwe ion between the coins increases re urrent, thus reducing friction or heating the second se		
insulati eddy c	ion between the coins increases re		
insulati eddy c	ion between the coins increases re urrent, thus reducing friction or heatin cations of Eddy Currents	ng.	nagnetic fields in the stove generate eddy currents
insulati eddy c	ion between the coins increases re urrent, thus reducing friction or heatin cations of Eddy Currents	^{ng.}	nagnetic fields in the stove generate eddy currents the metal pot placed on it, thus producing heat.
insulati eddy c	ion between the coins increases re urrent, thus reducing friction or heatin cations of Eddy Currents	ng. Changing r the base of 1. Th	the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces
insulati eddy c	ion between the coins increases re urrent, thus reducing friction or heatin cations of Eddy Currents	ng. Changing r the base of 1. Th hig	the metal pot placed on it, thus producing heat.
insulati eddy c	ion between the coins increases re urrent, thus reducing friction or heatin cations of Eddy Currents	ng. Changing r the base of 1. Th hig 2. Th ma	the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces gh-frequency electromagnetic field. e field penetrates the metal of the ferrous (magne aterial) cooking vessel and sets up a circulating ec
insulati eddy c	ion between the coins increases re urrent, thus reducing friction or heatin cations of Eddy Currents	ng. Changing r the base of 1. Th hig 2. Th ma cu 3. Th	the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces gh-frequency electromagnetic field. e field penetrates the metal of the ferrous (magne aterial) cooking vessel and sets up a circulating ed rrent, which generates heat. e heat generated <i>in the cooking vessel</i> is transferred
insulati eddy c	ion between the coins increases re urrent, thus reducing friction or heatin cations of Eddy Currents	ng. Changing r the base of 1. Th hig 2. Th cu 3. Th the 4. No so	the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces gh-frequency electromagnetic field. e field penetrates the metal of the ferrous (magne aterial) cooking vessel and sets up a circulating ec rrent, which generates heat.

A pulsing current is applied to the coil, which then induces a magnetic field shown. When the magnetic field of the coil moves across metal, such as the coin in this illustration, the field induces electric currents (called eddy currents) in the coin. The eddy currents induce their own magnetic field, which generates an opposite current in the coil, which induces a signal indicating the presence of metal.

URE

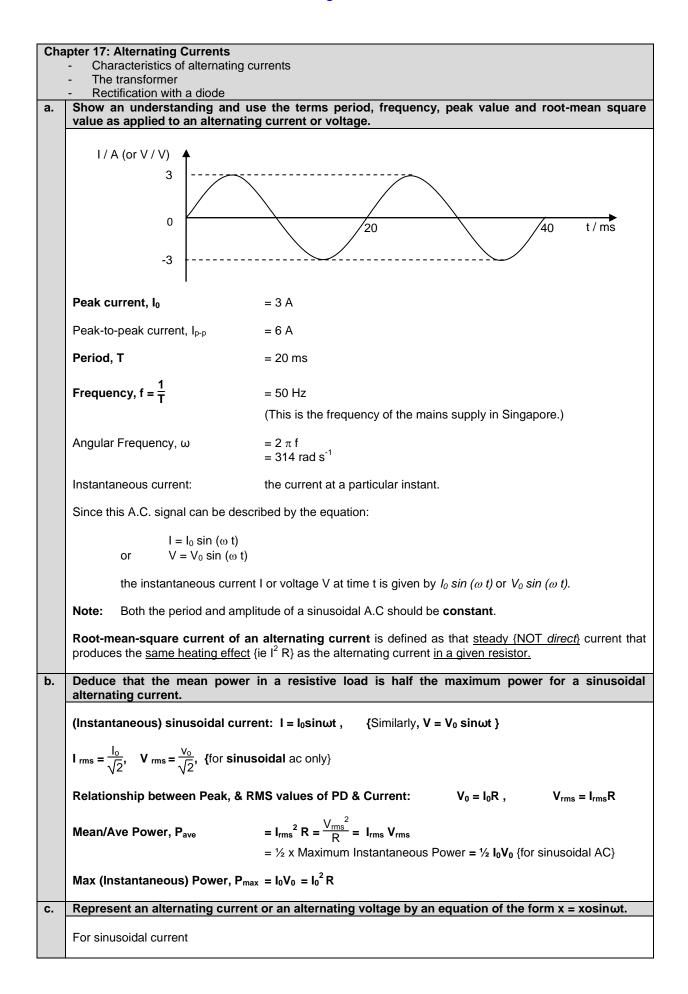
Т

MEGALEC

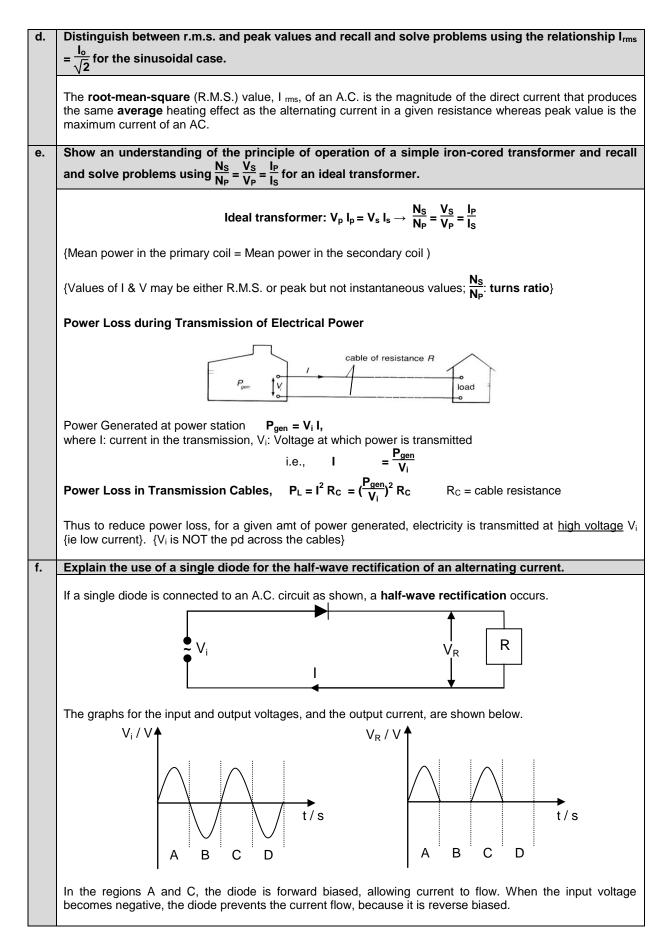

www.youtube.com/megalecture

magnetic field through the secondary coil is no longer zero and changes with time, since the current is ac. The changing magnetic flux causes an induced voltage to appear in the secondary coil, which triggers the circuit breaker to stop the current. ELCB works very fast (in less than a millisecond) and turn off the current before it reaches a dangerous level.

5 Eddy current brake


An **eddy current brake**, like a conventional friction brake, is responsible for slowing an object, such as a train or a roller coaster. Unlike friction brakes, which apply pressure on two separate objects, eddy current brakes slow an object by creating eddy currents through electromagnetic induction which create resistance, and in turn either heat or electricity.

Consider a metal disk rotating clockwise through a perpendicular magnetic field but confined to a limited portion of the disk area. (Compare this with the Faraday's disk earlier)



Sector Oa and Oc are not in the field, but they provide return conducting path, for charges displaced along Ob to return from b to O. The result is a circulation of eddy current in the disk. The current experiences a magnetic force that opposes the rotation of the disk, so this force must be to the right. The return currents lie outside the field, so they do not experience magnetic forces. The interaction between the eddy currents and the field causes a braking action on the disk.

vww.youtube.com/megalecture

voutube.com/megalecture

SECTION VI MODERN PHYSICS

	Charter 40: Overfum Dhusics				
Ch	hapter 18: Quantum Physics - Energy of a photon - The photoelectric effect - Wave-particle duality - Energy levels in atoms - Line spectra - X-ray spectra - The uncertainty principle - Schrödinger model - Barrier tunnelling Show an appreciation of the particulate nature of electromagnetic radiation.				
а.	Onow a	appreciation of the particulate nature of electromagnetic radiation.			
		on is a discrete packet {or quantum} of energy of an electromagnetic radiation/wave.			
b.	Recall a	and use E = hf			
	Energy	of a photon, $\mathbf{E} = \mathbf{h} \mathbf{f} = \frac{\mathbf{h} \mathbf{c}}{\lambda}$ where h: Planck's constant			
	λ _{violet} ≈ 4	$I x 10^{-7}$ m, $\lambda_{red} \approx 7 x 10^{-7}$ m {N07P1Q34: need to recall these values}			
	Power	of electromagnetic radiation, $P = Rate of incidence of photon x Energy of a photon = \binom{N}{t} \frac{hc}{\lambda}$			
с.		in understanding that the photoelectric effect provides evidence for a particulate nature of			
f.	for a wa	magnetic radiation while phenomena such as interference and diffraction provide evidence ave nature. photoelectric phenomena in terms of photon energy and work function energy.			
		lectric effect refers to the <u>emission of electrons</u> from a cold <u>metal surface</u> when <u>electromagnetic</u> of <u>sufficiently high frequency</u> falls on it.			
	<u>4 Major</u>	Observations:			
	(a)	No electrons are emitted if the frequency of the light is below a minimum frequency {called the threshold frequency }, regardless of the intensity of light			
	(b)	Rate of electron emission {ie photoelectric current} is proportional to the light intensity.			
	(c)	{Emitted electrons have a range of kinetic energy, ranging from zero to a certain maximum value. Increasing the freq increases the kinetic energies of the emitted electrons and in particular, increases the maximum kinetic energy.} This maximum kinetic energy depends only on the frequency and the metal used { ϕ }; the intensity has no effect on the kinetic energy of the electrons.			
	(d)	Emission of electrons begins instantaneously {i.e. no time lag between emission & illumination} even if the intensity is very low.			
		NB: (a), (c) & (d) cannot be explained by Wave Theory of Light; instead they provide evidence for the particulate/particle nature of electromagnetic radiation.			
	Explanation for how photoelectric effect provides evidence for the particulate nature of em radiation:{N07P3})				
	{Consider the observations (a), (c) & (d). Use <u>any 2</u> observations above to describe how they provide evidence that em radiation has a particle nature.}				
	-	According to the "Particle Theory of Light", em radiation consists of a stream of particles/photons/discrete energy packets, <u>each of energy hf</u> . Also, <i>no more than one electron can absorb the energy of one photon</i> {" <u>All-or- Nothing Law</u> ".}			
	-	Thus if the energy of a photon hf < the minimum energy required for emission (ϕ), no emission can take place no matter how intense the light may be. {E <i>xplains observation (a)</i> }			
	-	This also explains why, { <i>even at very low intensities</i> }, as long as $hf > \phi$, emission takes place without a time delay between illumination of the metal & ejection of electrons.{ <i>Explains observation</i>			

	(d)}				
d.	Recall the significance of threshold frequency.				
	Threshold frequency is the <u>minimum</u> frequency of the em radiation required to eject an electron from a metal surface. {This is because the electrons are held back by the attractive forces of the positive nuclei in the metal.}				
e.	Recall and use the equation $\frac{1}{2}mv_{max}^{2} = eV_{s}$ where V_{s} is the stopping potential.				
	Work function of a metal is the minimum energy required to eject an electron from a metal surface				
	$\mathbf{\Phi} = \mathbf{h} \mathbf{f}_0 = \frac{\mathbf{h} \mathbf{c}}{\mathbf{\lambda}_0}$				
	λ_0 = threshold wavelength				
	Maximum KE of electrons, $\frac{1}{2} \mathbf{m}_{e} \mathbf{v}_{max}^{2} = \mathbf{eV}_{s}$ {in magnitude}, \mathbf{V}_{s} : stopping potential h f = ϕ + e V _s				
g.	Explain why the maximum photoelectric energy is independent of intensity whereas the photoelectric current is proportional to intensity.				
	From $\mathbf{e} \mathbf{V}_{\mathbf{s}} = \mathbf{h} \mathbf{f} - \phi$,				
	e Vs				
	(proportional to				
	V_s 0 V f_0				
	 If only <u>intensity</u> doubles, the <u>saturation current</u> doubles (V_s: no change) If only <u>frequency</u> increases, <u>magnitude of V_s</u> also increases, thus no change to saturation current. 				
	Intensity = $\frac{\text{Incident Power}}{\text{Illuminated Area}} = \left(\frac{N}{t}\right)\frac{\text{hc }1}{\lambda \text{ Area}}$				
	\Rightarrow Intensity \propto Rate of incidence of photons, N/t {for a given λ }				
	Photocurrent I = $\left(\frac{n}{t}\right)$ e, where $\left(\frac{n}{t}\right)$ = rate of emission of electrons				
	Why rate of emission of electrons << rate of incidence of photons {for $f > f_0$ }:				
	- Not every photon would collide with an electron; most are reflected by the metal or miss hitting any electron.				
	- On the way out to the metal surface, an electron may lose its kinetic energy to ions and other electrons it encounters along the way. This energy loss prevents it from overcoming the work function.				
	$1 \text{ eV} = (1.6 \text{ x } 10^{-19} \text{ C})\text{x} (1 \text{ V}) = 1.6 \text{ x } 10^{-19} \text{ J} $ { Using W = QV}				
	1 nanometre (nm) = 1×10^{-9} m				
h.	Recall, use and explain the significance of hf = $\phi + \frac{1}{2}mv_{max}^2$				
	Photoelectric equation: Energy of photon = Work function (energy) + Max. KE of electrons				
	hf = $\phi + \frac{1}{2} m_e v_{max}^2$				

MEGALECTUR www.megalecture.com

i.	Describe and interpret qualitatively the evidence provided by electron diffraction for the wave nature of particles.				
j.	Recall and use the relation for the de Broglie wavelength $\lambda = \frac{h}{p}$.				
	Wave-Particle Duality Concept				
	- Refers to the idea that light and matter {such as electrons} have both wave & particle properties.				
	- The wavelength of an object is given by $\lambda = \frac{h}{p}$ { p : momentum of the particle.}				
	- Interference and diffraction provide evidence for the wave nature of E.M. radiation.				
	- <u>Photoelectric effect</u> provides evidence for the <u>particulate nature</u> of E.M. radiation.				
	- These evidences led to the concept of the wave-particle duality of light.				
	Electron diffraction provides evidence that <u>matter</u> /particles have also a wave nature & thus, have a dual nature.				
	de Broglie wavelength of a particle {"matter waves"}, $\lambda = \frac{h}{p}$				
k. I.	Show an understanding of the existence of discrete electron energy levels in isolated atoms (e.g. atomic hydrogen) and deduce how this leads to spectral lines. Recall and solve problems using the relation $hf = E_1 - E_2$.				
	Energy Levels of Isolated Atom:				
	- Are <u>discrete</u> {i.e. can only have certain energy values.}				
	- Difference between successive energy levels $\Delta E:$ decreases as we move from ground state upwards.				
	Explain how existence of electron energy levels in atoms gives rise to line spectra {N03P3Q6, 4 m}				
	- Energy levels are discrete.				
	- During a downward transition, a photon is emitted.				
	- Freq of photon $f = \frac{E_i - E_f}{h}$				
	 Since E_i & E_f can only have discrete values, the freq are also discrete and so a line {rather than spectrum is produced. {No need to mention role of spectrometer} 				
	2 common ways to cause Excitation of an atom:				
	- When bombarded by an incident <u>electron</u> where KE of incident electron > Δ E				
	i.e. $(\frac{1}{2} m_e u^2)_{before collision} = \Delta E + (\frac{1}{2} m_e v^2)_{after collision}$				
	- Absorbing an incident <u>photon</u> of frequency f where h f must = Δ E exactly				
	The energy level of the ground state gives the ionization energy , i.e. the energy needed to <u>completely</u> removes an electron initially in the <u>ground state</u> from the atom {i.e. to the energy level $n = \infty$, where $E_{\infty} = 0$ }.				
١.	Distinguish between emission and absorption line spectra.				
	Emission line spectrum: A series of discrete/separate bright lines on a dark background, produced by electron transitions within an atom from higher to lower energy levels and emitting photons.				
	An excited atom during a downward transition emits a photon of frequency f, such that $E_i - E_f = h f$				

Absorption line spectrum: A continuous bright spectrum crossed by "dark" lines. It is produced when "white light" passes through a cool gas. Atoms/electrons of the cool gas absorb photons of certain frequencies and get excited to higher energy levels which are then quickly re-emitted in all directions. Explain the origins of the features of a typical X-ray spectrum using quantum theory. n. Characteristic X-rays: produced when an electron is knocked out of an inner shell of a target metal atom, allowing another electron from a higher energy level to drop down to fill the vacancy. The x-rays emitted have specific wavelengths, determined by the discrete energy levels which are characteristic of the target atom. Continuous X-ray Spectrum {Braking Radiation (Bremsstrahlung)}: produced when electrons are suddenly decelerated upon collision with atoms of the metal target. Minimum λ of cont. spectrum λ_{min} : given by $\frac{hc}{\lambda_{min}} = eV_a$, V_a : accelerating pd of x-ray tube Show an understanding of and apply the Heisenberg position-momentum and time-energy ο. uncertainty principles in new situations or to solve related problems. Heisenberg Uncertainty Principles: If a measurement of the position of a particle is made with uncertainty Δx and a <u>simultaneous</u> measurement of its momentum is made with uncertainty Δp , the product of these 2 uncertainties can never be smaller than $\frac{h}{4\pi}$ i.e. $\Delta x \Delta p \ge \frac{h}{4\pi}$ Similarly $\Delta E \Delta t \ge \frac{h}{4\pi}$ where E is the energy of a particle at time t Show an understanding that an electron can be described by a wave function ψ where the square of р. the amplitude of wave function $|\psi|^2$ gives the probability of finding the electron at a point. (No mathematical treatment is required.) A particle can be described by a wave function Ψ where the square of the amplitude of wave function, $|\Psi|^2$, is proportional to the probability of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the q. phenomenon of quantum tunnelling of an electron across such a barrier. **Potential barrier** A region of electric field that prevents an atomic particle like an electron on one side of the barrier from passing through to the other side. OR A region where the potential energy of a particle, if it is placed there, is greater than the total energy of the particle. Hence the particle would experience an opposing force if it tries to enter into the potential barrier Describe the application of quantum tunnelling to the probing tip of a scanning tunnelling r. microscope (STM) and how this is used to obtain atomic-scale images of surfaces. (Details of the structure and operation of a scanning tunnelling microscope are not required.) Quantum tunnelling: A quantum-mechanical process whereby a particle penetrates a classically forbidden region of space, i.e. the particle goes through a potential barrier even though it does not have enough energy to overcome it. Due to the wave nature of a particle, there is a non-zero probability that the particle is able to penetrate the potential barrier. Scanning tunnelling microscope: Involves passing electrons from the tip of a probe through a potential barrier to a material that is to be

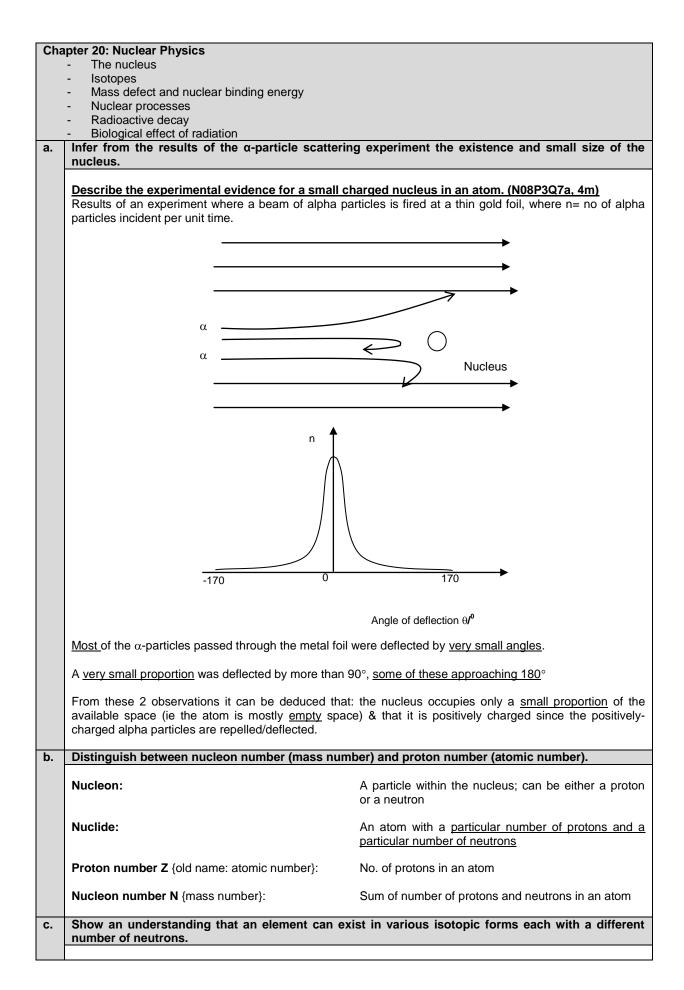
www.youtube.com/megalecture

G A L E C www.megalecture.c

	scanned.			
	- Magnit	um tunnelling allows electrons to overcome the potential barrier between tip & material tude of tunnelling current is dependent on the dist betw the tip and the surface. are two methods to obtain images of the surface of the material:		
		aintain the tip at constant height and measure the tunnelling current aintain a constant tunnelling current and measure the (vertical) position of the tip.		
	(A feedback device adjusts the vertical height of the tip to keep the tunnelling current const as the tip is scanned over the surface {Method 2}). The output of the device provides an image of the surface contour of the material.)			
s.		tionship transmission coefficient T \propto exp(-2kd) for the STM in related situations or to		
	solve problem	s. (Recall of the equation is not required.)		
	Transmission	coefficient (T): measures the <u>probability</u> of a particle <u>tunnelling</u> through a barrier.		
		$k = \sqrt{\frac{8\pi^2 m(U - E)}{h^2}}$ {given in Formula List}		
	2 k.d	d: the thickness of the barrier in metres		
	$T = e^{-2 k d}$	m: mass of the tunnelling particle in kg		
		U: the "height" of the potential barrier in J {NOT: eV}		
		E: the energy of the electron in J		
		h: The Planck's constant		
	Desall and us	a the relationship D . T . A where D is the reflection coefficient and T is the		
t.	Recall and use the relationship $R + T = 1$ where R is the reflection coefficient and T is the transmission coefficient, in related situations or to solve problems.			
	Reflection coe	fficient (R): measures the probability that a particle gets reflected by a barrier.		
		T + R = 1		

Cha	pter 19: Lasers and Semi	conductors			
Cila	 Basic principles of lase 	ers			
	 Energy bands, conductors and insulators Semiconductors 				
	- Depletion region of a p-n junction				
а.	Recall and use the terms spontaneous emission, stimulated emission and population inversion in related situations.				
	Spontaneous emission:	A process whereby a photon is emitted when an electron in an excited atom falls <u>naturally</u> to a lower energy level, i.e. <u>without requiring an external event to trigger</u> it.			
	Stimulated emission:	A process whereby an <u>incoming photon</u> causes/induces another photon of the <u>same frequency & phase</u> (& direction) to be emitted from an excited atom.			
	Laser:	A monochromatic, coherent, parallel beam of high intensity light.			
	Meta stable state:	An excited state whose lifetime is much longer than the typical (10 ⁻⁸ s) lifetime of excited states. A condition whereby there are more atoms in an excited state than in the ground state.			
	Population inversion:				
	{A meta stable state is essential for laser production because it is required for population inver achieved, which, in turn, increases the probability of stimulated emissions.}				
b.		laser in terms of population inversion and stimulated emission. (Details of ion of a laser are not required.)			
	Conditions to achieve Laser action:				
	a. Atoms of the laser medium must have a meta-stable state.				
	at medium must have a meta-stable state. St be in a state of population inversion. Tons must be confined in the system long enough to allow them to cause a chain ated emissions from other excited atoms.				
c.	Describe the formation of	of energy bands in a solid.			
	Formation of Energy Bands in a Solid/Band theory for solids:				
	- Unlike the case of an <i>isolated atom</i> , in a <i>solid</i> , the atoms are <u>very much closer</u> to each other.				
	- This allows the electrons from neighbouring atoms to interact with each other.				
	s interaction, each discrete energy level that is associated with an isolated atom is ub-levels.				
	{This is in accordance to Pauli Exclusion Principle which states that: no 2 electrons can be in the same energy state}				
	- These sub-levels are <u>extremely close</u> to one another such that they form an <u>energy band</u> . {In other words, an energy band consists of a very large number of energy levels which are very close together.}				
d.	Distinguish between cor	nduction band and valence band.			
	Valence Band:	The highest energy band that is completely filled with electrons.			
	Conduction Band:	The <u>next higher</u> band; For some metals/ good conductors, it is <u>partially-filled;</u> For other metals, the VB & CB <u>overlap</u> {hence it is also <u>partially-filled</u> }			
	Energy Gap {Forbidden Band}	A region where no energy state can exist; It is the energy difference between the CB & VB			

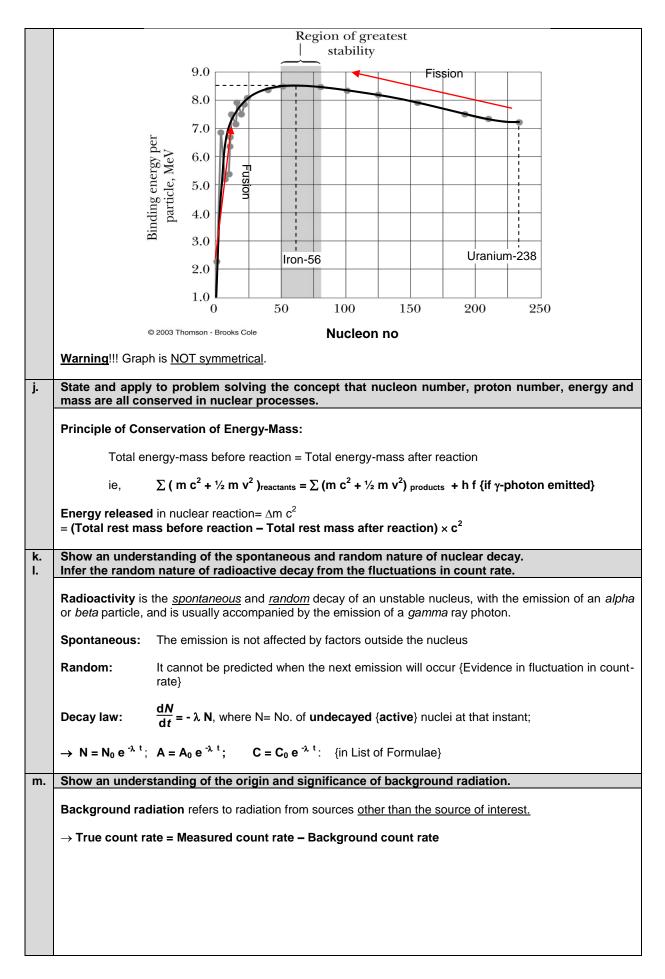
MEGALECTURE www.megalecture.com


		Conductors	Insulators	Semi-conduct
	duction Band	Partially filled	Empty	
	ence Band rgy gap between the bands	Completely Occu NA		Small (≈1 eV)
	rge Carriers	free electrons	Large (≈10 eV)	free electrons
ona	igo outrioro			holes
nsulat - -	tor: For a (good) <i>conductor</i> {ie a <u>conduction band</u> can <u>ver</u> since they are <u>nearby</u> . <u>The ease at which these e</u>	<u>y easily</u> gain energy	from the field to "ju	mp" to unfilled energe
	the fact that there is a hig conductors.	<u>h number density of</u>	free electrons make	e metals very good
-	For an insulator, the conduction completely occupied by electric	ctrons; and the energ	y gap between the tw	
-	Since the conduction band It requires a lot of energy			band to the conduct
	across the wide energy gap	.,		
-	When an electric field is ap {Thus, insulators make poo			
-	For <i>intrinsic</i> semi-conduct {compared to insulator}	ors, the <u>energy ga</u>	<u>p</u> between the two	bands is <u>relative</u>
-	As such even at room tem <u>excitation</u> to jump to the u states in the valence band b	infilled energy states		
-	When an electric field is ap holes {in the valence band} electricity.			
-	{Thus, for <i>intrinsic</i> semicon light can cause photo-excita		conduct vary with te	emperature {or even

www.youtube.com/megalecture

MEGALECTURE www.megalecture.com

f.		e qualitatively how n- and p-type doping change the conduction properties of onductors.	f	
	Doping	r.		
	-	Refers to the addition of impurity atoms to an intrinsic semiconductor to modify the number and type of charge carriers.	d	
	-	n-type doping increases the no. of free {NOT: valence } electrons; p-type doping increases the no of holes.).	
	-	Note that, even with a very small increase in the dopants, the electrical resistivity of an extrinsic semiconductor decreases <u>significantly</u> because the number of charge carriers of the intrinsic semiconductor is typically <u>very small</u> .		
Explain why electrical resistance of an intrinsic semiconductor material decreases as its rises. (N08P2Q5, 4 m)				
	(Based	on the band theory, a semiconductor has a completely filled valence band and an empty conduction ith a small energy gap in between. Hence there are no charge carriers and the electrical resistance		
	(2)	When temperature is low, electrons in the valence band do not have sufficient energy to jump across the energy gap to get into the conduction band. When temperature rises, electrons in the valence band receive thermal energy to enter into the conduction band leaving holes in the valence band.	е	
		Electrons in the conduction band & holes in the valence band are mobile charge carriers and can contribute to current. Increasing the number of charge carriers means lower resistance.	ſ	
	0.51%			
	2 Differ	rences between p-type silicon & n-type silicon:		
	-	In n-type Si, the <u>majority charge carrier</u> is the electron, its <u>minority charge carrier</u> is the hole. For p-type Si, the situation is reversed.		
	-	In n-type Si, the dopants are typically pentavalent atoms (having 5 valence electrons); In p-type Si, the dopants are typically trivalent atoms (valency = 3)		
g.		s qualitatively the origin of the depletion region at a p-n junction and use this to explain how unction can act as a rectifier.	v	
	Origin of Depletion Region			
	How a	p-n junction can act as a rectifier		
	-	When a p-n junction diode is connected in <u>reverse bias</u> in a circuit, the negative terminal of the battery pulls holes from the p-type semiconductor leaving behind more negatively-charged acceptor ions. At the same time the positive terminal pulls electrons from the n-type semiconductor leaving behind more positively-charged donor ions.	d	
	-	This results in the <u>widening of the depletion region</u> and <u>an increase in the height of the potentia</u> <u>barrier</u> , and so no current flows.	<u>1 </u>	
	-	When a p-n junction diode is connected in a forward-bias connection in a circuit, the externally applied pd opposes the contact pd across the depletion region.	у	
	-	If the <u>externally applied pd</u> is great enough, it <u>supplies energy to the holes and electrons to</u> <u>overcome the potential barrier</u> and, so a current will flow. {In general, a forward-bias connection <u>narrows the depletion region</u> and <u>reduces the height of the potential barrier.}</u>	<u>2</u> n	
		p-n junction {diode} allows current to flow in one direction only {when the p-n junction is in forward nd so, it can be used as a rectifier to rectify an ac to dc}	d	
	1			



www.youtube.com/megalecture

	Isotopes: are <u>atoms</u> with the same proton number, but different nucleon number {or different no of neutrons}			
d.	Use the usual notation for the representation of nuclides and represent simple nuclear reactions by nuclear equations of the form $\frac{14}{7}$ N + $\frac{4}{2}$ He $\rightarrow \frac{17}{8}$ O + $\frac{1}{1}$ H.			
	Self-Explanatory			
e. f.	Show an understanding of the concept of mass defect. Recall and apply the equivalence relationship between energy and mass as represented by $E = mc^2$ in problem solving.			
g. i.	Show an understanding of the concept of binding energy and its relation to mass defect. Explain the relevance of binding energy per nucleon to nuclear fusion and to nuclear fission.			
	Energy & Mass are Equivalent: $E = mc^2 \rightarrow \Delta E = (\Delta m)c^2$			
	Nuclear Binding Energy:			
	 Energy that must be supplied to completely separate the nucleus into its individual nucleons/particles. 			
	OR			
	- The energy released {not <i>lost</i> } when a nucleus is formed from its constituent nucleons.			
	B.E. per nucleon is a measure of the <u>stability</u> of the nucleus.			
	Mass Defect : The difference in mass between a nucleus and the total mass of its individual nucleons = $Zm_p + (A-Z)m_n - Mass$ of Nucleus			
	Thus, Binding Energy. = Mass Defect × c ²			
	In both nuclear fusion and fission, products have <u>higher</u> B.E. per nucleon {due to shape of BE per nucleon-nucleon graph}, energy is released {not <i>lost</i> } and hence products are <u>more stable</u> .			
	Energy released = Total B.E. after reaction (of products) - Total B.E. before reaction (ie of reactants)			
	Nuclear fission: The disintegration of a heavy nucleus into 2 lighter nuclei. Typically, the fission fragments have approximately the <u>same mass</u> and <u>neutrons are emitted</u> .			
h.	Sketch the variation of binding energy per nucleon with nucleon number.			
	Fig below shows the variation of BE per nucleon plotted against the nucleon no.			

www.youtube.com/megalecture

E

n.	Show an understanding	of the nature of α , β and γ	radiations.			
	Nature of $\alpha, \beta \& \gamma \{J2008\}$	<u>2Q7 4 m}</u>				
		Alpha Particles	Beta particles	Gamma Particles		
	Notation	α	β	γ		
	Charge Mass	+ 2e 4u	- e 1/1840 u	No charge Massless		
	Nature	Particle {He nucleus}	Particle {electron	Electromagnetic		
			emitted from nucleus}	Radiation		
	Speed	Monoenergetic (i.e. one speed only)	Continuous range (up to approximately 98% of light)	c		
о.	Define the terms activity	and decay constant and r	ecall and solve problems	using A = λ N.		
	Decay constant λ is defined as the probability of decay of a nucleus <u>per unit time</u> {or,the fraction of the total no. of undecayed nuclei which will decay per unit time. } Activity is defined as the rate at which the nuclei are disintegrating. $A = \frac{dN}{dt} = \lambda N$					
	Activity is defined as the r		disintegrating. $A = \frac{1}{dt} =$ = λN_0	= λ Ν		
		•	•			
р.	Infer and sketch the exponential nature of radioactive decay and solve problems using the relationship $x = xoexp(-\lambda t)$ where x could represent activity, number of undecayed particles and received count rate.					
	Number of undecayed nuclei ∞ Mass of sample \rightarrow Number of nuclei in sample = $\frac{\text{Sample Mass}}{\text{Mass of 1 mol}} \times N_A$					
	where, Mass of 1 mol of nuclide= Nucleon No {or relative atomic mass} expressed in grams {NOT: in kg!!}					
	{Thus for eg, mass of 1 mole of U-235 = 235 g = 235 x 10^{-3} kg, NOT: 235 kg}					
	Application of PCM to radioactive decay (N08P3Q7b(iv))					
	It is useful to remember that when a stationary nucleus emits a single particle, by PCM, after the decay,the ratio of their KE = ratio of their speeds, which in turn, = reciprocal of the ratio of their masses					
q.	Define half-life.					
	Half-life is defined as the <u>average</u> time taken for <u>half</u> the <u>number</u> {not: mass or amount} of unc nuclei in the sample to disintegrate,					
	or, the <u>average</u> time taken	for the <u>activity</u> to be halved	I <u>.</u>			
	$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} \{ \text{in List of Formulae} \}$					
r.	Solve problems using the	e relation $\lambda = \frac{0.693}{2}$.				
	Solve problems using the relation $\lambda = \frac{0.693}{t^{\frac{1}{2}}}$.					
	EXAMPLE 20R1 Antimony-124 has a half-life of 60 days. If a sample of antimony-124 has an initial activity of 6.5×10^{6} Bq, what will its activity be after 1 year (365 days)?					
	Using $A = A_0 e^{-\lambda t}$ eq	qn (4) & t $_{1/2} = \frac{\ln 2}{\lambda}$				
	\rightarrow A = 9.6 x 10 ⁴					

s.	Discuss qualitatively the effects, both direct and indirect, of ionising radiation on living tissues and cells.			
	Radiation damage to biological organisms is often categorized as: somatic and genetic.			
	<u>Somatic damage</u> refers to any part of the body except the reproductive organs. Somatic damage <u>harms that particular organism</u> <u>directly</u> . Some somatic effects include radiation sickness (nausea, fatigue, and loss of body hair) and burns, reddening of the skin, ulceration, cataracts in the eye, skin cancer, leukaemia, reduction of white blood cells, death, etc.			
	<u>Genetic damage</u> refers to damage to reproductive organs. Genetic effects cause <u>mutations</u> in the reproductive cells and so affect <u>future generations</u> – hence, the effects are <u>indirect</u> . (Such mutations may contribute to the formation of a cancer.)			
	Alternatively,			
	- Ionising radiation may damage living tissues and cells <u>directly</u> .			
	- It may also occur <u>indirectly</u> through chemical changes in the surrounding medium, which is mainly water. For example, the ionization of water molecules produces OH free radicals which may react to produce H ₂ O ₂ , the powerful oxidizing agent hydrogen peroxide, which can then attack the molecules which form the chromosomes in the nucleus of each cell.			

