
whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

1. To produce coherent microwaves a single source is positioned behind a metal sheet in which two slits have been cut. Arnav is using a microwave detector on the other side of the metal sheet to better understand the ways in which waves combine.

Total for Question 1: 10

[2]

[1]

[2]

(a) State the principle of superposition of waves and illustrate it schematically.

(b) What is meant by 'coherent microwaves'?

(c) Arnav walks in a straight line parallel to the slits and on the opposite side of the metal sheet from the source. Explain, in terms of the path difference, why he encounters a series of amplitude maxima and minima.

(d) The wavelength of a light source can be calculated experimentally using a diffraction grating. Outline how you would do this, taking care to include details of the experimental setup, any measurements that must be taken and any calculations required.

(e) After finishing his microwave experiment Arnav is asked to calculate the wavelength of light produced by a laser. He measures the angle between the beam and the eighth-order maximum as 0.14° and uses a grating with a slit spacing of the light is the wavelength of the light used?

[2]

2. Standing waves can be produced using both transverse and longitudinal progressive waves. This question explores how the notes produced on simple instruments are affected by the tubes' and strings' lengths.

Total for Question 2: 10

(a) State two differences between standing waves and progressive waves.

[2]

[3]

(b) The tension in a cello string is related to the speed of the progressive wave travelling along it by the relationship $v = \sqrt{\frac{T}{\mu}}$, where μ is a constant and T is the tension. For a 70 cm long cello string held with a tension of 10 N the frequency of the first harmonic is 65 Hz. Calculate the value of the constant μ .

(c) How would the fundamental frequency of the string change if its mass per unit length were doubled? [2]

In tubes, standing waves are produced when the air column vibrates at specific frequencies. A closed end requires that the air is stationary, whilst at an open end oscillations of the air have their greatest amplitude. This results in nodes forming at closed ends and antinodes forming at open ends.

(d) George is blowing across the top of a 350 cm glass tube. He produces a pote with a frequency of 196 Hz. By calculating the frequencies of the first harmonics, determine whether the tube is open at one or both ends. The speed of sound in air is 343 ms^{-1} .

entropy of the second s

[3]

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

3. Geoff is testing out different combinations of lenses. He has six identical convex lenses at his disposal, each with a focal length of 4 m.

Total for Question 3: 10

(a) By sketching a ray diagram, determine whether or not a diverging lens can produce a real image. [2] Indicate on your diagram where the image will be.

- (b) Calculate the power of the following:
 - i. A single lens of Geoff's.
 - ii. A combination of all six lenses.

[1]

[1]

(c) Show how the effective focal length of a combination of identical convex lenses is related to their [2]number and the focal length of an individual lens.

Geoff places a vase 1 m from a compound lens that he has constructed using some of his six identical lenses. The resultant magnification factor is 4.

www.youtube.com/megalecture

[1]

[3]