Nambridge Assessment

Interactive Example Candidate Responses
 Paper 2 (May/June 2016), Question 1
 Cambridge International AS \& A Level
 Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Answer all the questions in the spaces provided.

1 (a) Define acceleration.
..rate of change of velocity \qquad
.
(b) A man travels on a toboggan down a slope covered with snow from point A to point B and then to point C . The path is illustrated in Fig. 1.1.

Fig. 1.1 (not to șcale)
The slope $A B$ makes an angle of 40° with the horizontal and the slope $B C$ makes an angle of 20° with the horizontal. Friction is not negligible.
The man and toboggan have a combined mass of 95 kg .
The man starts from rest at A and has constant acceleration between A and B . The man takes 19 s to reach B . His speed is $36 \mathrm{~ms}^{-1}$ at B .
(i) Calculate the acceleration from A to B .

$$
\begin{array}{ll}
v^{2}=4^{2}+2 a s & v=u+a t \\
36^{2}=0+2 a(+4) & 36=9(19) \\
0 & a=1.9
\end{array}
$$

$$
\text { acceleration }=\ldots
$$

(ii) Show that the distance moved from A to B is 340 m .

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
36^{2} & =2(1.9) \mathrm{s} \\
s & =342 \\
& \approx 340 \mathrm{~m}
\end{aligned}
$$

Your Mark 1(a) \square

01	Mark scheme	
(a)	acceleration = change in velocity / time (taken) or rate of change of velocity B1	[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{array}{ll}\text { C1 } \\ \text { A1 } & \\ \end{array}$
(b) (ii)	$\begin{aligned} & s=1 / 2(u+v) \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$	
(b)(iii)	1. $(\triangle \mathrm{KE}=)^{1 / 2} \times 95 \times(36)^{2}$	C1

1(b)(ii) \square1. $(\Delta \mathrm{KE}=) 1 / 2 \times 95 \times(36)^{2}$
$=62000(61560) \mathrm{J} 1$[2]
2. $(\triangle P E=) 95 \times 9.81 \times 340 \sin 40^{\circ}$ or
$95 \times 9.81 \times 218.5$
C1
$=200000 \mathrm{JA} 1$
(b)(iv) \quad work done (by frictional force) $=\triangle P E-\triangle K E$
or
1(b)(iii) \square or
work done $=200000-62000$
(values from $\mathbf{1 b}$ (iii) $\mathbf{1}$. and 2.) C 1
(frictional force $=138000 / 340=410(406) \mathrm{N}$
[420 N if full figures used]
A1

1(b)(iv) \square

(b)(v)	$-m a=m g \sin 20^{\circ}-f$ or $m a=-m g \sin 20^{\circ}+f \quad C 1$
$-95 \times 3.0=95 \times 3.36-f$	
$f=600(604) \mathrm{N}$	

1(b)(v) \square

ww.megalecture.com

(iii) For the man and toboggan moving from \dot{A}.to B , calculate

1. the change in kinetic energy,

$$
\begin{aligned}
& \frac{1}{2} m v^{2} \\
= & \frac{1}{2}(95)\left(36^{2}\right) \\
\approx & 62000 \\
= & 61560
\end{aligned}
$$

change in kinetic energy $=\ldots \ldots . .$.
2. the change in potential energy.

$$
\begin{aligned}
\text { change } \pi \text { ke } & =\text { change in PE } \\
& =m g h \\
& =95 \times 9.81 \times 340 \\
& =318727 \\
& \approx 319000
\end{aligned}
$$

change in potential energy $=\ldots \ldots . .319000$
(iv) Use your answers in (iii) to determine the average frictional force that acts on the toboggan between A and B .
(v) A parachute opens on the toboggan as it passes point B . There is a constant deceleration of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ from B to C.

Calculate the frictional force that produces this deceleration between B and C .

$$
F=m a
$$

$$
=95 x-3
$$

$$
F_{f}-F=m a=-285
$$

1(b)(i) \square

\begin{tabular}{|c|c|c|c|}
\hline 01 \& \multicolumn{3}{|l|}{Mark scheme} \\
\hline (a) \& acceleration = change in velocity / time (taken) or rate of change of velocity B1 \& \& [1] \\
\hline (b) (i) \& \[
\begin{aligned}
\& v=0+\text { at or } v=\text { at } \\
\& \left(a=36 / 19=1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2}\right.
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { C1 } \\
\& \text { A1 }
\end{aligned}
\] \& [2] \\
\hline (b) (ii) \& \[
\begin{aligned}
\& s=1 / 2(u+v) \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\
\& =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\
\& =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m})
\end{aligned}
\] \& \& [1] \\
\hline (b) (iii) \& \[
\begin{aligned}
\& \text { 1. }(\Delta \mathrm{KE}=) 1 / 2 \times 95 \times(36)^{2} \\
\& =62000(61560) \mathrm{J} \mathrm{~A} 1 \\
\& \text { 2. }(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \mathrm{sin} 40^{\circ} \text { or } \\
\& 95 \times 9.81 \times 218.5 \\
\& =200000 \mathrm{JA} 1
\end{aligned}
\] \& \begin{tabular}{l}
C1 \\
C1
\end{tabular} \& [2]

[2]
[4]

\hline (b) (iv) \& | work done (by frictional force) $=\triangle P E-\triangle K E$ |
| :--- |
| or |
| work done $=200000-62000$ |
| (values from 1b(iii) 1. and 2.) C1 |
| (frictional force $=138000 / 340=$) $410(406) \mathrm{N}$ |
| [420 N if full figures used] | \& A1 \&

\hline (b) (v) \& $$
\begin{aligned}
& -m a=m g \sin 20^{\circ}-f \text { or } m a=-m g \sin 20^{\circ}+f \\
& -95 \times 3.0=95 \times 3.36-f \\
& f=600(604) \mathrm{N}
\end{aligned}
$$ \& C1 \& [2]

\hline
\end{tabular}

\square

$$
\begin{aligned}
F_{p} & =-285+F \\
& =-28.5-750
\end{aligned}
$$

$$
\begin{aligned}
& =-285-750 \\
& =-1035 \text { frictional force }=\ldots . . .1035
\end{aligned}
$$

$$
\begin{aligned}
& 318727-61560 \\
& =257 \times 10^{3} \mathrm{~J} \\
& W=F s \\
& \begin{array}{l}
F=\frac{257 \times 10^{3}}{342}
\end{array} \\
& =75 \mathrm{~J} \\
& \text { frictional force }= \\
& 750
\end{aligned}
$$

(a) Define acceleration.

(b) A man travels on a toboggan down a slope covered with snow from point A to point B and then to point C. The path is illustrated in Fig. 1.1.

Fig. 1.1 (not to scale)
The slope $A B$ makes an angle of 40° with the horizontal and the slope $B C$ makes an angle of 20° with the horizontal. Friction is not negligible.

The man and toboggan have a combined mass of 95 kg

The man starts from rest at A and has constant acceleration between A and B. The man takes 19 s to reach B . His speed is $36 \mathrm{~ms}^{-1}$ at B .
(i) Calculate the acceleration from A to B .

$$
\begin{aligned}
& a=\frac{36-0}{19} \\
& a=\frac{36}{19} \\
& a=1.89
\end{aligned}
$$

$$
19
$$

acceleration $=$ \qquad 1.89 \qquad $m s^{-2}[2]$
(ii) Show that the distance moved from A to B is 340 m .

$$
\begin{aligned}
& S \times t=d \quad S=4 t+\frac{1}{2} a t^{2} . \\
& S=\frac{1}{2} a t^{2} \quad s=\frac{1}{2} \times 1.89^{2} \times(19)^{2} \\
& s=341.145 \mathrm{~m} \text {. }
\end{aligned}
$$

1(a)	01	Mark scheme	
	(a)	acceleration = change in velocity / time (taken) or rate of change of velocity B1	
	(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & \left(a=36 / 19=1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2}\right. \end{aligned}$	$\begin{array}{ll} \text { C1 } & \\ \text { A1 [2] } \end{array}$
1(b)(i)	(b)(ii)	$s=1 / 2(u+v) t \quad$ or $s=v^{2} / 2 a \quad$ or $s=1 / 2 a t^{2}$ $=1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2}$ $=340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m})$	M1 [1]
1(b)(ii)	(b)(iii)	$\begin{aligned} & \text { 1. }(\Delta \mathrm{KE}=) 1 / 2 \times 95 \times(36)^{2} \\ & =62000(61560) \mathrm{JA} 1 \\ & \text { 2. }(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \mathrm{sin} 40^{\circ} \text { or } \\ & \quad 95 \times 9.81 \times 218.5 \\ & =200000 \mathrm{JA} 1 \end{aligned}$	$\begin{array}{cc} \text { C1 } & \\ & {[2]} \\ \text { C1 } & \\ & {[2]} \\ & {[4]} \end{array}$
1(b)(iii)	(b) (iv)	```work done (by frictional force) = \trianglePE - \triangleKE or work done = 200 000-62000 (values from 1b(iii) 1. and 2.) C1 (frictional force = 138 000 / 340 =) 410 (406) N [420 N if full figures used]```	A1 [2]
1(b)(iv)	(b)(v)	$\begin{aligned} & -m a=m g \sin 20^{\circ}-f \text { or } m a=-m g \sin 20^{\circ}+f \\ & -95 \times 3.0=95 \times 3.36-f \\ & f=600(604) \mathrm{N} \end{aligned}$	

1(b)(iv) \square
1(b)(v) \qquad
(iii) For the man and toboggan moving from A to B , calculate

$$
\begin{array}{rlr}
\text { 1. the change in kinetic energy, } & v=\frac{d}{t} & \dot{V}=\frac{341.145}{19} \\
E_{k} & =\frac{1}{2} m^{2} \\
E_{k} & =\frac{1}{2} \times 95 \times 17.955 & v \\
E_{x}=852.86 \mathrm{~J} & 85.955 \\
& & \\
& &
\end{array}
$$

2. the change in potential energy.

(iv) Use your answers in (iii) to determine the average frictional force that acts on the toboggan between A and B .

$$
\begin{gathered}
E_{p}-E_{x}=\text { frictin Force. } \\
204274-852.86 . \\
203421.79 \\
2.082 \times 10^{5}
\end{gathered}
$$

(v) A parachute opens on the toboggan as it passes point B . There is a constant deceleration of $3.0 \mathrm{~ms}^{-2}$ from B to C .

Calculate the frictional force that produces this deceleration between B and C .
fcma

$$
\begin{aligned}
& F=95 \times 3 \\
& F=285 \mathrm{~N} .
\end{aligned}
$$

\qquad 285 N [2]
$\substack{\text { Your } \\ \text { Mark } \\ \text { M } \\ \text { 1(a) } \\ \square}$

01	Mark scheme		
(a)	acceleration = change in velocity $/$ time (taken) or rate of change of velocity B1		[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	[2]
(b)(ii)	$\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$		[1]
(b)(iii)	$\begin{aligned} & \text { 1. }\left(\Delta \mathrm{KE}=1 / 2 \times 95 \times(36)^{2}\right. \\ & =62000(61560) \mathrm{J} \mathrm{~A} 1 \\ & \text { 2. }(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \mathrm{sin} 40^{\circ} \text { or } \\ & \quad 95 \times 9.81 \times 218.5 \\ & =200000 \mathrm{JA} 1 \end{aligned}$	C1 C1	[2] [2] [4]
(b)(iv)	work done (by frictional force) $=\triangle P E-\triangle K E$ or work done $=200000-62000$ (values from 1b(iii) 1. and 2.) C1 (frictional force $=138000 / 340=$) $410(406) \mathrm{N}$ [420 N if full figures used]		[2]
(b)(v)	$\begin{aligned} & -m a=m g \sin 20^{\circ}-f \text { or } m a=-m g \sin 20^{\circ}+f \\ & -95 \times 3.0=95 \times 3.36-f \\ & f=600(604) \mathrm{N} \end{aligned}$		[2]

1(b)(iv) \square

1(b)(v) \qquad

Answer all the questions in the spaces provided.

1 (a) Define acceleration.
Define acceleration.
........ackelstation.........change in speed time taken
(b) A man travels on a toboggan down a slope covered with snow from point. A to point B and then to point C . The path is illustrated in Fig. 1.1.

The slope $A B$ makes an angle of 40° with the horizontal and the slope $B C$ makes an angle of 20° with the horizontal. Friction is not negligible.

The man and toboggan have a combined. mass of 95 kg .
The man starts from rest at A and has constant acceleration between A . and B . The man takes 198 to reach B. His speed is $36 \mathrm{mg}^{-1}$ at B.
(i) Calculate the acceleration from A to :

$$
a=\frac{36}{19} \rightarrow 1.89
$$

acceleration $=$

\qquad 89 ms^{-2} [2]
(ii) Show that the distance moved from A to B is 340 m .

$$
\begin{aligned}
S=4 t+\frac{1}{2} a t^{2} . S & =0+\frac{1}{2} \times 1.89 \times 19^{2} \\
& =341 .+45 \mathrm{~m} \simeq 340 \mathrm{~m} \\
& =35
\end{aligned}
$$

$\substack{\text { Your } \\ \text { Mark } \\ \text { 1(a) } \\ \square}$

01	Mark scheme	
(a)	acceleration = change in velocity / time (taken) or rate of change of velocity B1	[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{array}{ll} \text { C1 } \\ \text { A1 } \end{array}$
(b)(ii)	$\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$	M1 [1]
(b)(iii)	$\begin{aligned} & \text { 1. }(\Delta K E=) 1 / 2 \times 95 \times(36)^{2} \\ & =62000(61560) \mathrm{J} \mathrm{A1} \end{aligned}$	C1 [2]

1(b)(ii) \square 1. $(\triangle K E=) 1 / 2 \times 95 \times(36)^{2}$
$=62000(61560) \mathrm{JA1}$
2. $(\triangle \mathrm{PE}=) 95 \times 9.81 \times 340 \sin 40^{\circ}$ or $95 \times 9.81 \times 218.5$
$=200000 \mathrm{JA} 1$
1(b)(iii) \square (b)(iv) work done (by frictional force) $=\triangle P E-\triangle K E$
or
work done $=200000-62000$
(values from 1b(iii) 1. and 2.) C1
(frictional force $=138000 / 340=$) $410(406) \mathrm{N}$
[420 N if full figures used]
A1
(b)(v) $\quad-m a=m g \sin 20^{\circ}-f$ or $m a=-m g \sin 20^{\circ}+f \quad C$

$$
-95 \times 3.0=95 \times 3.36-f
$$

$\mathrm{f}=600(604) \mathrm{N}$

1(b)(v) \square
(iii) For the man and toboggan moving from A to B , calculate

1. the change in kinetic energy,

$$
K E=\frac{1}{2} m v^{2}
$$

$$
=\frac{1}{2} \times 95 \times 30
$$

$$
=1710
$$

change in kinetic energy $=-1710$
2. the change in potential energy.
(iv) Use your answers in (iii) to determine the average frictional force that acts on the toboggan between A and B .

$$
\text { We: } \begin{aligned}
W & =m g \\
& =95 \times 9.81 \rightarrow 931.95
\end{aligned}
$$

\qquad N [2]
(v) A parachute opens on the toboggan as it passes point B . There is a constant deceleration of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ from B to C .

Calculate the frictional force that produces this deceleration between B and C .

$$
\begin{array}{l|ll}
W-F=m a & 932-F=288 & W=m g \\
W-F=95 \times 30 & F=1217 & =98 \times 9.81 \rightarrow 931.95 \\
931.9 &
\end{array}
$$

\qquad
\qquad N [2]

MEGALECTURE

$$
\begin{aligned}
& G P E=m g h \\
& =95 \times 9.81 \times h . \\
& \sin 40^{\circ}=\frac{0}{341.145} \therefore 0=341.145 \sin 40^{\circ} \\
& 1710=95 \times 9.81 \times h h^{22}-283 \\
& =-98 \times 9.81 \times 219.2283 \\
& h=1.83 \\
& \text { gPE }=95 \times 9.81 \times 1.83=1705.47 \\
& 95 \times 9.81 \times \\
& 1705^{*}
\end{aligned}
$$

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 2 (May/June 2016), Question 4 Cambridge International AS \& A Level Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

ww.youtube.com/megalecture

line Classes : Megalecture@gmail.com

www.megalecture.com

4 (a) By reference to the direction of the propagation of eriergy, state what is meant by a longitudinal wave and by a transverse wave.
longitudinal:Waves that travel parcale...............direchora...at... ...proporgaton of energy. \qquad
transverse: \qquad Wa: that travel of propor gation ot energy \qquad
(b) The intensity of a sound wave passing through air is given by
$I=K v \rho f^{2} A^{2}$
where I is the intensity (power per unit area),
K is a constant without units,
k is the speed of sound
is the density of air,
f is the frequency of the wave
and A is the amplitude of the wave.
Show that both sides of the equation have the same SI base units.

$$
\begin{aligned}
& I=P \quad P=F \times d \rightarrow \mathrm{~kg}_{\mathrm{P}} \mathrm{P} \mathrm{~s}^{-2} \mathrm{kgms}^{-2} \times \mathrm{ms}^{-1} \\
& P=\frac{F \times d}{t} \rightarrow \mathrm{sgrgs}^{-3} \mathrm{Egms}^{-2} \xrightarrow[\mathrm{kgm}^{-3}]{\mathrm{kg} \mathrm{~m}^{-3}} \\
& \mathrm{kgss}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& v p f^{2} A^{2} \rightarrow\left(\mathrm{~ms}^{-1}\right)\left(\operatorname{tgm}^{-3}\right) \times\left(\mathrm{s}^{-1}\right)^{2}(\mathrm{~m})^{2} \\
& \rightarrow \mathrm{~kg}^{-2} \mathrm{~S}^{-1} \times \mathrm{S}^{-2} \times \mathrm{m}^{2} \\
& \rightarrow \mathrm{kgg}^{-3} \\
& \therefore \text { LHS:RHS. }
\end{aligned}
$$

04	Mark scheme	
(a)	Iongitudinal: vibrations/oscillations (of the particles/wave) are parallel to the direction or in the same direction (of the propagation of energy) transverse: vibrations/oscillations (of the particles/wave) are perpendicular to the direction (of the propagation of energy)	B1 B1 [2]
(b)	LHS: intensity = power / area units: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \times \mathrm{m} \times \mathrm{s}-1 \times \mathrm{m}^{-2}$ or $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}-3 \times \mathrm{m}-2$ RHS: units: $\mathrm{m} \mathrm{s}^{-1} \times \mathrm{kg} \mathrm{m}^{-3} \times \mathrm{s}^{-2} \times \mathrm{m}^{2}$ LHS and RHS both $\mathrm{kg} \mathrm{s}^{-3}$	B1 M1 A13 [3]
(c)(i)	change/difference in the observed/apparent frequency when the source is moving (relative to the observer)	B1 [1]
(c)(ii)	wavelength increases/frequency decreases/red shift	B1 [1]
(d)	$\begin{aligned} & \text { observed frequency }=v f_{s} /\left(v-v_{s}\right) \\ & 550=(340 \times 510) /\left(340-v_{s}\right) \\ & v_{s}=25(24.7) \mathrm{m} \mathrm{~s}^{-1} \end{aligned}$	C1 C1 A1 [3] [Total: 10]

line Classes : Megalecture@gmail.com
(c) (i) Describe the Doppler effect.
.....Where the observed frequenc is difterent from the emilted

(ii) A distant star is moving away from a stationary observer.

State the effect of the motion on the light observed from the star.
 decreges cobserved) and \qquad
(d) A car travels at a constant speepd towards a stationary observer: The horn of the car sounds at a frequency of 510 Hz and the observer hears a frequency of 550 Hz . The speed of sound in air is $340 \mathrm{~ms}^{-1}$.
seex
Calculate the speed of the car.

```
550=\frac{510\times330}{(330-2)}
181,500-550x=168,300
5s0x=13,200
    x}=24\mp@subsup{\textrm{ms}}{}{-1
```


4(c)(ii)

Q4	Mark scheme	
(a)	Iongitudinal: vibrations/oscillations (of the particles/wave) are parallel to the direction or in the same direction (of the propagation of energy) transverse: vibrations/oscillations (of the particles/wave) are perpendicular to the direction (of the propagation of energy)	B1
(b)	LHS: intensity = power / area units: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \times \mathrm{m} \times \mathrm{s}-1 \times \mathrm{m}^{-2}$ or $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}-3 \times \mathrm{m}-2$ RHS: units: $\mathrm{m} \mathrm{s}^{-1} \times \mathrm{kg} \mathrm{m}^{-3} \times \mathrm{s}^{-2} \times \mathrm{m}^{2}$ LHS and RHS both $\mathrm{kg} \mathrm{s}^{-3}$	B1 M1 A13 [3]
(c)(i)	change/difference in the observed/apparent frequency when the source is moving (relative to the observer)	B1 [1]
(c)(ii)	wavelength increases/frequency decreases/red shift	B1 [1]
(d)	$\begin{aligned} & \text { observed frequency }=v f_{s} /\left(v-v_{s}\right) \\ & 550=(340 \times 510) /\left(340-v_{s}\right) \\ & v_{s}=25(24.7) \mathrm{m} \mathrm{~s}^{-1} \end{aligned}$	C1 C1 A1 [3] [Total: 10]

vw.youtube.com/megalecture

ww.megalecture.com

4 (a) By reference to the direction of the propagation of energy, state what is meant by a longitudinal wave and by a transverse wave..
longitudinal: A wave in whech ehé particle moves paralue. to the propagalion of energy is knoun as longluid. nal wave.
transverse: A wave in which the pasticle of thimotion moves perpervaicilar to the diection of motion is known as a crañrverse wave.
(b) The intensity of a sound wave passing through air is given by

$$
I=K v \rho \rho^{2} A^{2}
$$

where I is the intensity (power per unit area),
K is a constant without units,
v is the speed of sound,
ρ is the density of air,
f is the frequency of the wave
and A is the ampiitude of the wave.

Your
Mark

4(a) \square

$$
\frac{\operatorname{man}}{\mathrm{val}}=\mathrm{kgm}^{-3}
$$

$$
\begin{aligned}
& \text { Show that both sides of the equation have the same SI base units. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{kg} \times \mathrm{s}^{-3}}{\mathrm{~s}}=\mathrm{K} \times \mathrm{ms}^{-1} \times \mathrm{Kgm}^{-3} \times \mathrm{s}^{-2} \times \mathrm{m}^{2} \\
& \mathrm{Kgss}^{-3} \quad=\mathrm{K} \times \mathrm{rp}^{6} \times \mathrm{Kg} * s-3 \\
& k g s^{-3}=k K^{-3} s^{-3} \\
& \text { 2 } 55^{-1} \\
& \begin{aligned}
E & =P x t \\
P & =w .
\end{aligned} \\
& P=\frac{w}{t} . \\
& \begin{array}{l}
f \times \mathrm{m} \mathrm{~ms}^{-2} \\
=\frac{\mathrm{Kg}_{\mathrm{K}} \mathrm{axsm}}{5}
\end{array}
\end{aligned}
$$

ww.youtube.com/megalecture

 ww.megalecture.com

 ww.megalecture.com}line Classes : Megalecture@gmail.com
(c) (i) Describe the Doppler effect.

発 The obsesved frequercy is always different to the frequeney emmiled when source and sound are in a
(ii) A distant star is moving away from a stationary observer.

State the effect of the motion on the light observed from the star,
The wavelenght ond the frequency has now
been changed so the motwon will also
change.
(d) A car travels at a constant speed towards a stationary observer. The horn of the car sounds at a frequency of 510 Hz and the observer hears a frequency of 550 Hz . The speed of sound in air is $340 \mathrm{~ms}^{-1}$.

Calculate the speed of the car.

$$
P=510
$$

$510=550 \times\left(\frac{340}{340-V_{\text {sar }}}\right)$
$0.927(340-$ vear $)=340$
340 -vcar $=366.67$
V car $=26.67$

a)	Q4	Mark scheme	
	(a)	Iongitudinal: vibrations/oscillations (of the particles/wave) are parallel to the direction or in the same direction (of the propagation of energy) transverse: vibrations/oscillations (of the particles/wave) are perpendicular to the direction (of the propagation of energy)	
4(b)	(b)	LHS: intensity = power / area units: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \times \mathrm{m} \times \mathrm{s}-1 \times \mathrm{m}^{-2}$ or $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}-3 \times \mathrm{m}-2$ RHS: units: $\mathrm{m} \mathrm{s}^{-1} \times \mathrm{kg} \mathrm{m}^{-3} \times \mathrm{s}^{-2} \times \mathrm{m}^{2}$ LHS and RHS both $\mathrm{kg} \mathrm{s}^{-3}$	B1 M1 A13 [3]
4(c)(i)	(c)(i)	change/difference in the observed/apparent frequency when the source is moving (relative to the observer)	B1 [1]
	(c) (ii)	wavelength increases/frequency decreases/red shift	B1 [1]
4(c)(ii)	(d)	$\begin{aligned} & \text { observed frequency }=v f_{S} /\left(v-v_{S}\right) \\ & 550=(340 \times 510) /\left(340-v_{S}\right) \\ & v_{S}=25(24.7) \mathrm{m} \mathrm{~s}^{-1} \end{aligned}$	C1 C1 A1 [3] [Total: 10]

line Classes : Megalecture@gmail.com

4 (a) By reference to the direction of the propagation of energy, state what is meant by a longitudinal wave and by a transverse wave.

$$
\begin{aligned}
& \text { longitudinal: The energy is parallel to The direction } \\
& \text {. A The propagation such" as a sound wave. } \\
& \text { transverse: The energy is perpendicular to the direction of } \\
& \text {....... the propagation such as in a gupta string. } \\
& \text { :............................. }
\end{aligned}
$$

(b) The intensity of a sound wave passing through air is given by

$$
I=K v \rho f^{2} A^{2}
$$

where I is the intensity (power per unit area),
K is a constant without units,
v is the speed of sound,
ρ is the densify of air,
f is the frequency of the wave f is the frequency of the wave
and A is the amplitude of the wave.
N that both sides of the equation have the same SI base units.
$I=K_{v p} f^{2} A^{2}$
$\frac{\mathrm{m}^{2} s^{-4}}{w^{z}}=\mathrm{m}^{-1} \mathrm{Kgmm}^{-3} \mathrm{~s}^{-3} \mathrm{n}^{x}$
$\mathrm{KgO}^{-4}=\mathrm{Kgh}^{-4}$
Thus proved

$$
\begin{aligned}
\text { power } & =\frac{0 f * d}{t} \\
- \text { power } & =\frac{\mathrm{mad}}{t} \\
& =\frac{\mathrm{kgms}^{-2} \mathrm{~m}}{\mathrm{~s}} \\
& =\frac{\mathrm{Kgm}^{2} \mathrm{~s}^{-3}}{t} \\
& =\mathrm{Kgm}^{2} \mathrm{~s}^{-4}
\end{aligned}
$$

$$
\because, \quad . \quad-\mathrm{V}=\mathrm{r} \text { 勧 } \mathrm{ms}^{-1}
$$

$$
-p=\frac{m}{v}=\frac{\mathrm{Kg}_{g}}{\mathrm{~m}^{3}}=\mathrm{kgm}^{-3}
$$

$$
-f=s^{-3}
$$

$$
-A=m^{2}
$$

Mark Comment
0/2 These definitions make no sense and do not describe the waves in the detail required.

0/3 Correct equation for power but mathematical error made in analysis.
There is an apparent change in the frequency base units to make units on each side of the equation equal means that no credit can be awarded.

1/1 Clear description given
4(c)(ii)

1/1 Correct statement made.

2/3 Good presentation of equation and correct substitution of values. Mathematical error made in the third line hence incorrect final answer and loss of one mark.
(c) (i) Describe the Doppler effect.
The change..................porent frequency dve to Thetwingonmenement of the soucce or observer \qquad
(ii) A distant star is moving away from a stationary observer.
. State the effect of the motion on the light observed from the star.
\qquad
\qquad
[.] ${ }^{[1]}$
(d) A car travels at a constant speed towards a stationary observer. The horn of the car sounds at a frequency of 510 Hz and the observer hears a frequency of 550 Hz . The speed of sound in air is $340 \mathrm{~ms}^{-1}$.
;alculate the speed of the car.

$$
\begin{aligned}
& f_{0}=\left(\frac{V_{w}}{V_{w}-V_{s}}\right) f_{s} \\
& 550=\left(\frac{340}{340-V_{s}}\right) 510 \\
& 40=\frac{340}{340-V_{s}} \\
& 340=13600-40 V_{s} \\
& +13260=740 V_{s} \\
& V_{s}=331.5
\end{aligned}
$$

\square

Examiner marks and comments
Mark Comment
$\mathbf{0 / 2}$ These definitions make no sense and do not describe the waves in the detail required.

0/3 Correct equation for power but mathematical error made in analysis.
There is an apparent change in the frequency base units to make units on each side of the equation equal means that no credit can be awarded.

1/1 Clear description given
\square 1/1 Correct statement made.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Nambridge Assessment

Interactive Example Candidate Responses
 Paper 2 (May/June 2016), Question 5
 Cambridge International AS \& A Level
 Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

5 (a) Light of a single wavelength is incident on a diffraction grating. Explain the part played by diffraction and interference in the production of the first order maximum by the diffraction grating.
 ...narrowgapppening.
whan they me...must be conevent of the..nd and polanised inthen same plane.
(b) The diffraction grating illustrated in Fig. 5.1 is used with light of wavelength 486 nm .

Fig. 5.1 (not to scale)
The orders of the maxima produced are shown on the screen in Fig. 5.1. The angle between the two second order maxima is 59.4°.

Calculate the number of lines per millimetre of the grating.

$$
\begin{array}{rlrl}
\frac{59.4}{2}= & 29.7^{\circ} & \alpha=\frac{1}{N} \\
& \left.\begin{array}{ll}
d \sin \theta=n \lambda \\
d \sin 29.7^{\circ}=2\left(4.86 \times 10^{-7}\right) & 1.96 \times 10^{-6}
\end{array}\right)=\frac{1}{\mathrm{~N}} \\
& \therefore d=1.96 \times 10^{-6} \mathrm{~m} & \therefore N=509731 \text { line } \\
& & \therefore N=509731140\left(\mathrm{~mm}^{(\mathrm{m})}\right.
\end{array}
$$

05	Mark scheme	
(a)	diffraction: spreading/diverging of waves/light (takes place) at (each) slit/element/gap/aperture interference: overlapping of waves (from coherent sources at each element) path difference $\lambda /$ phase difference of $360\left({ }^{\circ}\right) / 2 \pi$ (produces the first order)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 [3] } \end{aligned}$
(b)	$\begin{aligned} & d \sin \theta=\mathrm{n} \lambda \quad \text { or } \quad \sin \theta=\mathrm{Nn} \lambda \\ & \mathrm{~d}=\left(2 \times 486 \times 10^{-9}\right) / \sin 29.7^{\circ}\left(=1.962 \times 10^{-6}\right) \\ & \text { number of lines }=510(509.7) \mathrm{mm}^{-1} \end{aligned}$	$\begin{gathered} \text { C1 } \\ \text { C1 } \\ \text { A1 [3] } \\ \text { [Total: } 9] \end{gathered}$

MEGA LECTURE

ww.youtube.com/megalecture

line Classes : Megalecture@gmail.com

www.megalecture.com

5 (a) Light of a single wavelength is incident on a diffraction grating. Explain the part played by diffraction and interference in the production of the first order maximum by the diffraction grating.
diffraction: .. The wave experience a bending due to meeting. . an apache or obstac......s.
-............................. interference: .. When tho or....................ngeses.....mest, out a
 aGauge in...........isplassenart. \qquad
[3]
(b) The diffraction grating illustrated in Fig. 5.1 is used with light of wavelength 486 nm .

Fig. 5.1 (not to scale)
The orders of the maxima produced are shown on the screen in Fig. 5.1. The angle between the two second order maxima is 59.4°.

Calculate the number of lines per millimetre of the grating.

$$
\begin{aligned}
& D \sin \theta=n \lambda \\
& D=\frac{2 \times 486 \times 10^{-9}}{\sin \left(\frac{59.4^{\circ}}{2}\right)} \\
& D=\frac{1.30}{1.96 \times 10^{-6}}
\end{aligned}
$$

number of lines per millimetre $=$ \qquad
\square
\square
5(b)

QL	Mark scheme	
(a)	diffraction: spreading/diverging of waves/light (takes place) at (each) slit/element/gap/aperture interference: overlapping of waves (from coherent sources at each element) path difference $\lambda /$ phase difference of $360\left({ }^{\circ}\right) / 2 \pi$ (produces the first order)	B1
(b)	$d \sin \theta=\mathrm{n} \lambda \quad$ or $\sin \theta=\mathrm{Nn} \lambda$ $\mathrm{d}=\left(2 \times 486 \times 10^{-9}\right) / \sin 29.7^{\circ}\left(=1.962 \times 10^{-6}\right)$ number of lines $=510(509.7) \mathrm{mm}^{-1}$	CB]

ww.youtube.com/megalecture

line Classes : Megalecture@gmail.com

www.megalecture.com

5 (a) Light of a single wavelength is incident on a diffraction grating. Explain the part played by diffraction and interference in the production of the first order maximum by the diffraction grating
diffraction:-2...This is when..

 constructive..........interterence........or........nes.trauc.tive \qquad interference
\qquad strauctive
(b) The diffraction grating illustrated in Fig. 5.1 is used with light of wavelength 486 nm .

Fig. 5.1 (not to scale)
The orders of the maxima produced are shown on the screen in Fig. 5.1. The angle between the two second order maxima is 59.4°.
Calculate the number of lines per millimetre of the grating. $\lambda=486$

$$
\begin{aligned}
& d \sin \theta=n \lambda \\
& d \sin 59.4=2 \times 486 \\
& d=1129.3 \quad \text { 1129.3 }
\end{aligned}
$$

05	Mark scheme	
(a)	diffraction: spreading/diverging of waves/light (takes place) at (each) slit/element/gap/aperture interference: overlapping of waves (from coherent sources at each element) path difference $\lambda /$ phase difference of $360\left({ }^{\circ}\right) / 2 \pi$ (produces the first order)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 [3] } \end{aligned}$
(b)	$\begin{aligned} & d \sin \theta=\mathrm{n} \lambda \quad \text { or } \quad \sin \theta=\mathrm{Nn} \lambda \\ & \mathrm{~d}=\left(2 \times 486 \times 10^{-9}\right) / \sin 29.7^{\circ}\left(=1.962 \times 10^{-6}\right) \\ & \text { number of lines }=510(509.7) \mathrm{mm}^{-1} \end{aligned}$	$\begin{gathered} \text { C1 } \\ \text { C1 } \\ \text { A1 [3] } \\ \text { [Total: } 9] \end{gathered}$

5(b \square

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 3 (May/June 2016), Question 1
 Cambridge International AS \& A Level
 Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

You may not need to use all of the materials provided.
1 In this experiment, you will investigate a wooden strip acted on by several forces.
(a) (i) Set up the apparatus as shown in Fig. 1.1.

Fig. 1.1
The mass m should be 100 g .
The angle θ between the wooden strip and the string should be approximately 45°.
(ii) Adjust the apparatus so that the spring is vertical and the wooden strip is parallel to the bench.
(b) (i) Record the mass m.

$$
m=
$$

\square
(ii) Measure and record the length y of the coiled part of the spring.

(iii) Measure and record θ.

θ_{1}	$\theta_{>}$	$\langle\theta\rangle$
66.0°	$68,0^{\circ}$	67.0°

.. [1]
[1] \square

Q1	Mark scheme
(b)(ii)	Value for y with unit in range $2.0 \leq y \leq 8.0 \mathrm{~cm}$.
(b)(iii)	Raw values of θ to the nearest degree. Value of θ in the range 40° to 50°.

1(b)(iii) \square
\square

1(e)(i) \square

1(e)(ii) \square
1(e)(iii) \square
(c) (i) Add 100 g to the mass hanger.
(ii) Adjust the height of the boss holding the nail until the wooden strip is parallel to the bench.
(iii) Measure and record m, y and θ.

y_{1}	y_{0}	$\langle y\rangle$
5.70	$5-70$	5.70
θ_{1}	θ_{2}	$\langle\theta\rangle$
58.0°	59.0°	59.0°

Q1	Mark scheme
(b)(ii)	Value for y with unit in range $2.0 \leq y \leq 8.0 \mathrm{~cm}$.
(b)(iii)	Raw values of θ to the nearest degree. Value of θ in the range 40° to 50°.

1(b)(iii) \square
\square

1(e)(i) \square

1(e)(ii) \square
1(e)(iii) \square

MEGA A ECTURE

(d) Change m and repeat (c)(ii) and (c)(iii) until you have six sets of values of m, y and θ. You may include your values from (b) and (c).

Include values of $m \sin \theta$ in your table.

m / g	y / cm			$\theta 1^{\circ}$			$m \sin \theta / \mathrm{g}$
	y_{1}	y.	<y>	θ	θ	< $\theta\rangle$	
100	450	450	4.50	660	68.0	67.0	92.1
200	5.70	5.70	5.70	580	590	59.0	171.
250	6.50	6.50	6.50	600	620	61.0	219
300	7.20	7.20	7.20	570	590	58.0	254
350	7.90	8.00	8.00	56°	56.0	56.0	290
450	9.30	9.40	9.40	540	55.0	55.0	369

(e) (i) Plot a graph of y on the y-axis against $m \sin \theta$ on the x-axis.
(ii) Draw the straight line of best fit.
(iii) Determine the gradient and y-intercept of this line.

Gradient: $\frac{7.2-5.7}{369-171}=\frac{1}{132}=7.58 \times 10^{-3} \mathrm{~cm}^{-1}$
c, $\begin{aligned} y \text {-interept: } \begin{aligned} y & =m x+c \\ 3.5 & =50\left(7.58 \times 10^{-3}\right)+c\end{aligned}, r\left(\frac{c}{c}\right.\end{aligned}$
$C=3.12 \mathrm{~cm}$

[2]

01 Mark scheme

1(b)(ii) \square
Six sets of readings of m, y and θ with correct trend scores 5 marks, five sets scores 4 marks etc. [5] Help from supervisor -1.
Range:
Range of values to include $\mathrm{m} \leq 150 \mathrm{~g}$ and $\mathrm{m} \geq 400 \mathrm{~g}$.
Column headings:
Each column heading must contain a quantity and
a unit where appropriate.
The unit must conform to accepted scientific convention, e.g. $m \sin \theta / \mathrm{g}$ or $\theta\left({ }^{\circ}\right)$.
Consistency:
All values of y must be given to the nearest mm only. Significant figures:
Every value of $m \sin \theta$ must be given to 2 or 3 s.f.
Calculation:
Values of $m \sin \theta$ calculated correctly to the number of s.f. given by the candidate
1(e)(i) \square (e)(i) $\begin{array}{ll}\text { Axes: } \\ & \text { Sensible scales must be used. Awkward scales }\end{array}$ Sensible scales must be us
(e.g. $3: 10$) are not allowed.
Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions.
Scales must be labelled with the quantity that is being plotted.
Scale markings should be no more than three large squares apart.
Plotting of points:
All observations must be plotted.
Diameter of plotted points must be \leq half a small square (no "blobs").
Plotted points must be accurate to half a small square.
Quality:
All points in the table (at least 5) must be plotted on the grid for this mark to be awarded.
All points must be within $\pm 0.25 \mathrm{~cm}$ in the y direction of a straight line.

line Classes : Megalecture@gmail.com

vw.youtube.com/megalecture

www.megalecture.com

1(b)(ii)	01	Mark scheme
	(e)(ii)	Line of best fit: Judge by balance of all points on the grid about the candidate's line (at least 5 points). There must be an even distribution of points either side of the line along the full length. Allow one anomalous point only if clearly indicated by the candidate. Lines must not be kinked or thicker than half a square
1(d) 1(e)(i) 1(e)(ii)	(e)(iii)	Gradient: The hypotenuse of the triangle must be greater than half of the length of the drawn line. The method of calculation must be correct. Both read-offs must be accurate to half a small square in both the x and y directions. y-intercept: Either: Correct read-off from a point on the line and substituted into $y=m x+c$. Read-offs must be accurate to half a small square in both x and y directions. Or: Intercept read off directly from the graph (accurate to half a small square).
		[2]

MEGALECTURE

where P and Q are constants.
Using your answers in (e)(iii), determine the values of P and Q.

$$
\begin{aligned}
& \text { Give appropriate units. } \\
& y=P(m \sin \theta)+Q \\
& y
\end{aligned}=m x+C . ~ \begin{aligned}
P & =m=\text { gradient } \\
& =7.58 \times 10^{-3} \mathrm{cmg}^{-1} \\
C & =C \\
& =3.12 \mathrm{~cm}
\end{aligned}
$$

(f) The quantities y, m and θ are related by the equation

$$
y=P m \sin \theta+Q
$$

$$
\begin{aligned}
& 7.58 \times 10^{-3} \mathrm{~cm} \mathrm{~g}^{-1} \square \\
& Q=\frac{3.12 \mathrm{~cm}}{\square}
\end{aligned}
$$

You may not need to use all of the materials provided.
1 In this experiment, you will investigate a wooden strip acted on by several forces.
(a) (i) Set up the apparatus as shown in Fig. 1.1.

Fig. 1.1
The mass m should be 100 g .
The angle θ between the wooden strip and the string should be approximately 45°.
(ii) Adjust the apparatus so that the spring is vertical and the wooden strip is parallel to the bench.
(b) (i) Record the mass m.

$$
m=\ldots \ldots \ldots .
$$

(ii) -Measure and record the length y of the coiled part of the spring.

$$
y=0.035 m
$$

\square
(iii) Measure and record θ.
\qquad [1]
\square

Q1	Mark scheme
(b)(ii)	Value for y with unit in range $2.0 \leq y \leq 8.0 \mathrm{~cm}$.
(b)(iii)	Raw values of θ to the nearest degree. Value of θ in the range 40° to 50°.

Your Mark

1(b)(ii) \qquad

1(b)(iii) \square
1(d) \square
\square
1(e)(ii) \square

1(e)(iii) \square

(c) (i) Add 100 g to the mass hanger.
(ii) Adfust the height of the boss holding the nail until the wooden strip is parallel to the bench.
(iii) Measure and record m, y and θ.

ww.youtube.com/megalecture

www.megalecture.com

page
(d) Change m and repeat (c)(ii) and (c)(iii) until you have six sets of values of m, y and θ. You may include your values from (b) and (c).

Include values of $m \sin \theta$ in your table.			
m / g	y / cm	$0 / 0$	$m \sin Q$
100	3.5	45.0	70.70
150	3.8	44.0	104.2
200	4.5	40.4	129.6
250	4.8	38.0	1539
300	5.4	41.0	196.8
350	6.0	39.0	220.3

(e) (i) Plot a graph of y on the y-axis against $m \sin \theta$ on the x-axis.
(ii) Draw the straight line of best fit.
(iii) Determine the gradient and y-intercept of this line.
$m=6.0-3.4$
220.3-707
$=0.017$
$y=m x+c$
$6=0.017(220-3)+c$
$C=2.3$

Your Mark

1(b)(ii) \qquad

1(b) (iii) \square
1(d)

1(e)(i) \square

1(e)(ii) \square

1(e)(iii) \square

Q1 Mark scheme

Six sets of readings of m, y and θ with correct trend scores 5 marks, five sets scores 4 marks etc. [5]
Help from supervisor -1 .
Range:
Range of values to include $\mathrm{m} \leq 150 \mathrm{~g}$ and $\mathrm{m} \geq 400 \mathrm{~g}$
Column headings:
Each column heading must contain a quantity and
a unit where appropriate.
The unit must conform to accepted scientific convention, e.g. $m \sin \theta / \mathrm{g}$ or $\theta\left({ }^{\circ}\right)$.
Consistency:
All values of y must be given to the nearest mm only. Significant figures:
Every value of $m \sin \theta$ must be given to 2 or 3 s.f.
Calculation:
Values of $m \sin \theta$ calculated correctly to the number of s.f. given by the candidate
(e)(i) Axes: [1]

Sensible scales must be used. Awkward scales (e.g. 3:10) are not allowed.

Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions.
Scales must be labelled with the quantity that is being plotted.
Scale markings should be no more than three large squares apart.
Plotting of points:
All observations must be plotted.
Diameter of plotted points must be \leq half a small square (no "blobs").
Plotted points must be accurate to half a small square.

Quality:

All points in the table (at least 5) must be plotted on the grid for this mark to be awarded.
All points must be within $\pm 0.25 \mathrm{~cm}$ in the y direction of a straight line.

MEGA LECTURE

www.youtube.com/megalecture
 \section*{www.megalecture.com}

MEGA LECTURE

(f) The quantities y, m and θ are related by the equation

$$
y=P m \sin \theta+Q
$$

where P and Q are constants.
Using your answers in (e)(iii), determine the values of P and Q. Give appropriate units.

$$
y=P m \sin Q+Q
$$

$$
P=0.017
$$

$$
Q=2.3
$$

Mark scheme

1(e)(iii)

You may not need to use all of the materials provided.
1 In this experiment, you will investigate a wooden strip acted on by several forces.
(a) (i) Set up the apparatus as shown in Fig. 1.1.

Fig. 1.1
The mass m should be 100 g .
The angle θ between the wooden strip and the string should be approximately 45°.
(ii) Adjust the apparatus so that the spring is vertical and the wooden strip is parallel to the bench.
(b) (i) Record the mass m.

$$
m=\ldots \ldots100 \mathrm{~g} .
$$

(ii) Measure and record the length y of the coiled part of the spring.

$$
y=\frac{4 \cdot 2+4 \cdot 0+4 \cdot 3}{3}
$$

\square
(iii) Measure and record θ.

Q1	Mark scheme
(b)(ii)	Value for y with unit in range $2.0 \leq y \leq 8.0 \mathrm{~cm}$.
(b)(iii)	Raw values of θ to the nearest degree. Value of θ in the range 40° to 50°.

1(b)(iii) \square
1(d)

1(e)(i) \square
1(e)(ii) \square
1(e)(iii) \square

1(f)

(c) (i) Add 100 g to the mass hanger.
(ii) Adjust the height of the boss holding the nail until the wooden strip is parallel to the bench.
(iii) Measure and record m, y and θ.

$$
y=\frac{4 \cdot 8+4 \cdot 9+5 \cdot 0}{3}
$$

Your

1(b)(ii)	Q1	Mark scheme
	(b)(ii)	Value for y with unit in range $2.0 \leq y \leq 8.0 \mathrm{~cm}$.
	(b)(iii)	Raw values of θ to the nearest degree. Value of θ in the range 40° to 50°.

(d) Change m and repeat (c)(ii) and (c)(iii) until you have six sets of values of m, y and θ. You may include your values from (b) and (c)

Include values of $m \sin \theta$ in your table.

S.Na	m / g	y / cm	$\theta / \%$	$m \sin \theta / \mathrm{gz}$
1	100	4.26	45	70.7
2	150	4.6	50	114.9
3	200	4.9	55	163.8
4	250	6.0	60	216.5
5	7.0	65	271.9	
6	7.8	70	328.9	

(e) (i) Plot a graph of y on the y-axis against $m \sin \theta$ on the x-axis.
(ii) Draw the straight line of best fit.
[1]
(iii) Determine the gradient and y-intercept of this line.

$$
\begin{aligned}
& \text { Taking }(80,3.5) \text { and }(356,8.2) \\
& \text { gradient }=\frac{\Delta y}{\Delta x}=\frac{8.2-3.5}{356-80}=0.0170 \\
& \text { Taking }(80,3.5) \\
& y=m x+c . \\
& 3.5=0.0170 \times 80+c
\end{aligned}
$$

$$
c=2.14
$$

Your

1(b)(iii) \square
1(d)

1(b)(ii) \square

| (d) | $\begin{array}{l}\text { Six sets of readings of } m, y \text { and } \theta \text { with correct trend } \\ \text { scores } 5 \text { marks, five sets scores } 4 \text { marks etc. [5] }\end{array}$ |
| :--- | :--- | Help from supervisor -1 .

Range:
Range of values to include $\mathrm{m} \leq 150 \mathrm{~g}$ and $\mathrm{m} \geq 400 \mathrm{~g}$.
Column headings:
Each column heading must contain a quantity and
a unit where appropriate.
The unit must conform to accepted scientific convention, e.g. $m \sin \theta / \mathrm{g}$ or $\theta\left({ }^{\circ}\right)$.
Consistency:
All values of y must be given to the nearest mm only. Significant figures:
Every value of $m \sin \theta$ must be given to 2 or 3 s.f.

Calculation:

Values of $m \sin \theta$ calculated correctly to the number of s.f. given by the candidate

(e)(i) Axes: [1]

1(e)(ii) \square

1(e)(iii)

Sensible scales must be used. Awkward scales (e.g. 3:10) are not allowed.

Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions. Scales must be labelled with the quantity that is being plotted.
Scale markings should be no more than three large squares apart.
Plotting of points:
All observations must be plotted.
Diameter of plotted points must be \leq half a small square (no "blobs").
Plotted points must be accurate to half a small square. Quality:
All points in the table (at least 5) must be plotted on the
 grid for this mark to be awarded.
All points must be within $\pm 0.25 \mathrm{~cm}$ in the y direction of a straight line.

www.megalecture.com

1(b)(ii)	01	Mark scheme
	(e)(ii)	Line of best fit: Judge by balance of all points on the grid about the candidate's line (at least 5 points). There must be an even distribution of points either side of the line along the full length. Allow one anomalous point only if clearly indicated by the candidate. Lines must not be kinked or thicker than half a square
1(d)	(e)(iii)	Gradient: The hypotenuse of the triangle must be greater than half of the length of the drawn line. The method of calculation must be correct. Both read-offs must be accurate to half a small square in both the x and y directions. y-intercept: Either: Correct read-off from a point on the line and substituted into $y=m x+c$. Read-offs must be accurate to half a small square in both x and y directions. Or: Intercept read off directly from the graph (accurate to half a small square).

MEGALECTURE

(f) The quantities y, m and θ are related by the equation

$$
y=P m \sin \theta+Q
$$

where P and Q are constants.
Using your answers in (e)(iii), determine the values of P and Q. Give appropriate units.

Your Mark

1(b)(ii) \square

1(b)(iii) \square

[Total: 20]

Q1 Mark scheme

(f) Value of $P=$ candidate's gradient and value of $\mathrm{Q}=$ candidate's intercept. Do not allow fractions.
Unit for P correct ($\mathrm{m} \mathrm{kg}^{-1}$ or $\mathrm{cm} \mathrm{kg}{ }^{-1}$ or $\mathrm{mm} \mathrm{kg}^{-1}$ or $\mathrm{m} \mathrm{g}^{-1}$ or $\mathrm{cm} \mathrm{g}^{-1}$ or $\mathrm{mm} \mathrm{g}^{-1}$)
and consistent with value.
Unit for Q correct (m or cm or mm) and consistent with value.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Nambridge Assessment

Interactive Example Candidate Responses
 Paper 2 (May/June 2016), Question 7 Cambridge International AS \& A Level Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

www.megalecture.com

7 (a) Electric current is a flow of charge carriers. The charge on the carriers is quantised. Explain what is meant by quantised.
It means that chongh ia divide annongthe election . [1]
(b) A battery of electromotive force (e.m.t.) 9.0 V and internal resistance 0.25Ω is connected in series with two identical resistors X and a resistor Y , as shown in Fig. 7.1.

Fig. 7.1
The resistance of each resistor X is 0.15Ω and the resistance of resistor Y is 2.7Ω.
(i) Show that the current in the circuit is 2.8 A .

$$
v=12
$$

$\frac{V_{\text {battery }}}{R_{\text {total }}}=I$

$$
1=9
$$

$$
\begin{aligned}
I & =\frac{9}{(0.25+0.15+0.15+2.7)} \\
& =2.769 \mathrm{~A} \\
& =2.8 \mathrm{~A}
\end{aligned}
$$

(ii) Calculate the potential difference across the battery.

$$
\begin{array}{rlrl}
V & =1 R & 9-0.69 \\
V & =2.8 \times 0.25 & & =8.307 \\
& =0.69 & & =8.31
\end{array}
$$

(c) Each resistor X connected in the circuit in (b) is made from-a wire with a cross-sectional area of $2.5 \mathrm{~mm}^{2}$. The number of free electrons per unit volume in the wire is $8.5 \times 10^{29} \mathrm{~m}^{-3}$.
(i) Calculate the average drift speed of the electrons in X .

1. noge

$$
\begin{aligned}
I & =n \text { Ave } \\
2.8 & =8.5 \times 10^{29} \times 2.5 \times 10^{6} \times \vee \times 1.6 \times 10^{-19} m
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2.8}{3.4 \times 10^{17}}=V \\
& V=8.14 \times 10^{-18}
\end{aligned}
$$

$$
\text { drift speed }=\ldots . .8 \cdot 14 \times 10^{-18}
$$

(ii) The two resistors X are replaced by two resistors Z made of the same material and length but with half the diameter. c.a. \downarrow.
Describe and explain the difference between the average drift speed in Z and that in X . Since the difft speed is unvensely prpantarial

 [Total: 10]

07 Mark scherie

07	Mark scheme	
(a)	charge exists only in discrete amounts	B1 [1]
(b)(i)	$\begin{aligned} & E=I(R+r) \text { or } V=I R \\ & \text { (total resistance }=) 2.7+0.30+0.25(=3.25 \Omega) \\ & I=9.0 /(2.7+0.30+0.25) \text { or } 9.0 / 3.25=2.8 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A1 [3] } \end{aligned}$
(b)(ii)	$\begin{aligned} & V=I R_{\text {ext }} \\ & =2.77^{\times} \times 3.0 \text { or } 2.8 \times 3.0 \end{aligned}$ or $\begin{aligned} & V=E-I r \\ & =9.0-2.77 \times 0.25 \text { or } 9.0-2.8 \times 0.25 \\ & V=8.3(8.31) \vee \text { or } 8.4 \mathrm{~V} \mathrm{A1} \end{aligned}$	C1 (C1) [2]
(c)(i)	$\begin{aligned} & I=\operatorname{nev} A \\ & v=2.77 /\left(8.5 \times 10^{29} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-6}\right) \\ & =8.1(8.147) \times 10^{-6} \mathrm{~ms}^{-1} \text { or } 8.2 \times 10-6 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 [2]
(c)(ii)	A reduces by a factor 4 (1/4 less) or resistance of Z goes up by $4 \times$ current goes down but by less than a factor of 4 (as total resistance does not go up by a factor of 4) so drift speed goes up	M1 A1 [2] [Total: 10]

7 (a) Electric current is a flow of charge carriers. The charge on the carriers is quantised. Explain what is meant by quantised.
'.quant'sed' means expressed as a numencal value.
(b) A battery of electromotive force (e.m.f.) 9.0 V and internal resistance 0.25Ω is connected in
series with two identical resistors X and a resistor Y , as shown in Fig. 7.1.

The resistance of each resistor X is 0.15Ω and the resistance of resistor Y is 2.7Ω.
(i) Show that the current in the circuit is 2.8 A .

$$
\begin{aligned}
& V=I R \\
& q=I(0.25+0.15+0.15+27) \\
& q=I(3.25) \\
& \therefore I=2.8 \mathrm{~A} \quad \text { snown } .
\end{aligned}
$$

(ii) Calculate the potential difference across the battery.

$$
\quad \begin{aligned}
V & =I R \\
& =2.8 \times 0.25 \\
& =0.7 \mathrm{~V}
\end{aligned}
$$

\qquad 0.7 \qquad

www.megalecture.com

(c) Each resistor X connected in the circuit in (b) is made from a wire with a cross-sectional area of $2.5 \mathrm{~mm}^{2}$. The number of free electrons per unit volume in the wire is $8.5 \times 10^{29} \mathrm{~m}^{-3}$.
(i) Calculate the average drift speed of the electrons in X.

$$
\begin{aligned}
& I=n A V q \\
& 2.8=\left(8.5 \times 10^{29}\right) \cdot\left(2.5 \times 10^{-3}\right)(\mathrm{V}) \cdot\left(1.6 \times 10^{-19}\right) \\
& \therefore V=8.2 \times 10^{-9} \mathrm{~ms}^{-1} \\
& \quad \text { drift speed }=\ldots2 \times 10^{-19}
\end{aligned}
$$

(ii) The two resistors X are replaced by two resistors Z made of the same material and length but with half the diameter.
Describe and explain the difference between the average drift speed in Z and that in X.

s.peed which incerase by bi.. \qquad [Total: 10]

$$
\frac{I}{n A q}=v
$$ page

7 (a) Electric current is a flow of charge carriers. The charge on the carriers is quantised. Explain what is meant by quantised.
messured kow manes change fremos per.unit bino.
(b) A battery of electromotive force (e.m.f.) 9.0 V and internal resistance 0.25Ω is connected in series with two identical resistors X and a resistor Y , as shown in Fig. 7.1.

The resistance of each resistor X is $0.15 \dot{\Omega}$ and the resistance of resistor Y is 2.7Ω.
(i) Show that the current in the circuit is 2.8 A .

$$
E=1(R+r+r+r)
$$

$9.0 \mathrm{~V}=I(0.25+0.15+2.7+0.15)$
$9 \cdot 0=I(3.25)$
$I=\frac{9.0}{8.25}$
$=2.769$
$\simeq 2.8 \mathrm{~A}$
shown.
(ii) Calculate the potential difference across the battery.

$$
\begin{aligned}
& V=I R \\
& W=2 \text { 4.4.25 } V-2.69 \times 0.25 \\
& \text { vorabay } \quad v=0.69 v
\end{aligned}
$$

7(a) $\begin{aligned} & \text { Your } \\ & \text { Mark } \\ & \end{aligned} \quad$

07	Mark scheme	
(a)	charge exists only in discrete amounts	B1 [1]
(b)(i)	$\begin{aligned} & E=I(R+r) \text { or } V=I R \\ & \text { (total resistance }=) 2.7+0.30+0.25(=3.25 \Omega) \\ & I=9.0 /(2.7+0.30+0.25) \text { or } 9.0 / 3.25=2.8 \mathrm{~A} \end{aligned}$	C1 M1 A1 [3]
(b)(ii)	$\begin{aligned} & V=I R_{\text {ext }} \\ & =2.77 \times 3.0 \text { or } 2.8 \times 3.0 \end{aligned}$ or $\begin{aligned} & V=E-I r \\ & =9.0-2.77 \times 0.25 \text { or } 9.0-2.8 \times 0.25 \\ & V=8.3(8.31) \mathrm{V} \text { or } 8.4 \mathrm{~V} \mathrm{A1} \end{aligned}$	C1 (C1)
(c)(i)	$\begin{aligned} & I=\text { nevA } \\ & v=2.77 /\left(8.5 \times 10^{29} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-6}\right) \\ & =8.1(8.147) \times 10^{-6} \mathrm{~ms}^{-1} \text { or } 8.2 \times 10-6 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 [2]
(c)(ii)	A reduces by a factor 4 ($1 / 4$ less) or resistance of Z goes up by $4 \times$ current goes down but by less than a factor of 4 (as total resistance does not go up by a factor of 4) so drift speed goes up	M1 A1 [2]

www.megalecture.com

(c) Each resistor X connected in the circuit in (b) is made from a wire with a cross-sectic of $2.5 \mathrm{~mm}^{2}$. The number of free electrons per unit volume in the wire is $8.5 \times 10^{22} \mathrm{~m}^{-}$ $2.5 \times 10^{-3} \mathrm{~m}^{2}$
(i) Calculate the average drift speed of the electrons in X .

$$
\begin{aligned}
& I=n \text { Ave } \\
& 2.8=8.5 \times 10^{29} \times 2.5 \times 10^{-3} \times V \times 1.60 \times 10^{-19}
\end{aligned}
$$

$$
2.8=3.14 \times 10^{8} \mathrm{~V}
$$

$$
v=\frac{2.8}{3.4 \times 10^{8}}
$$

$v=8.24 \times 10^{-9} \quad$ drift speed $=. .5 \cdot .24 \times 10.9$
two resistors X are replaced by two resistors Z made of the same mat th but with half the diameter.
cribe and explain the difference between the average drift speed in Z and th

 :...mals be.....Rialued. \qquad
\qquad
\qquad $\ldots . .$.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 3 (May/June 2016), Question 2 Cambridge International AS \& A Level Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

nline Classes : Megalecture@gmail.com

vw.youtube.com/megalecture

ww.megalecture.com

You may not need to use all of the materials provided.

2 In this experiment, you will investigate the movement of a loaded wire
(a) (i) Take the shorter of the two wires.
(ii) Measure and record the diameter d of the wire.

wire. \quad| $\frac{0.31+}{}$ | $0.39+0.29$ |
| ---: | :--- |
| | $=0.297$ |
| | $=0.31 \mathrm{~mm}$ |
| $(0.30 \pm 0.01) \mathrm{mm}$ | |

$d=$
($5.3 \pm 7 \mathrm{mam}$

(iii) Calculate the cross-sectional area A of the wire using

$$
A=\frac{\pi d^{2}}{4}
$$

$$
A=\frac{\pi(0.30)^{2}}{4}
$$

$=0.07067$

$$
=0.071 \mathrm{~mm}^{2} \text {. }
$$

$A=$ \qquad

Your

	Your Mark
2(a)(ii)	\square
2(a)(iii)	\square
2(b)(iii)	\square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} .$
(b)(iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c) (i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d)(ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f)(i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

2(g)(ii) \square
(b) (i) Secure the hook of the mass hanger to one end of the wire leaving at least 20 cm of excess wire.
The wire may be wrapped around the hook several times.
(ii) Set up the apparatus as shown in Fig. 2.1.

The length L of wire between the clip and the hook of the mass hanger should be approximately 15 cm .

Fig. 2.1
(iii) Measure and record L

$$
\frac{15.4+15.4}{2}=15.4 \mathrm{~cm} \quad(15.4 \pm 0.1) \mathrm{cm}
$$

(iv) Estimate the percentage uncertainty in your value of L.

$$
\begin{aligned}
\frac{0.1}{15.4} & \times 100 \\
= & 0.65 \%
\end{aligned}
$$

\qquad

Your Mark

2(a)(ii) \qquad
\square
2(b)(iii)
2(b)(iv) \square

2(c)(i)

2(c)(ii) \square
2(d)(ii) \square

$$
\text { 2(e)(ii) } \square
$$

$$
\text { 2(f)(i) } \square
$$

$$
2(f)(\mathrm{ii})
$$

\square
2(g)(i) \square

2(g)(ii) \square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm}$.
(b)(iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c)(i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f) (i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

vw.youtube.com/megalecture
 ww.megalecture.com

$$
\begin{aligned}
1 \mathrm{~cm} & =10 \mathrm{mn} \\
1 \mathrm{~cm}^{2} & =100 \mathrm{mn}^{2} \\
x & =0.071
\end{aligned}
$$

(c) (i) Calculate C where

$$
\begin{aligned}
C=\frac{\sqrt{L}}{A} . & \begin{aligned}
& x=0.071 \\
& x=7.1 \times 10^{-6} \mathrm{~cm}^{2}
\end{aligned} \\
C & =\frac{\sqrt{L}}{A} \\
& =\frac{\sqrt{15.4}}{7.1 \times 10^{-6}} \\
& =552715.97 \\
C & =553,000 .
\end{aligned}
$$

(ii) Justify the number of significant figures that you have given for your value of C.

A has two significant fagures, so to increase the accuracy, 3 s.anific.ant figures wore used............. \qquad ..[1]
(d)
(i) Twist the mass hanger through approximately 180°.

Release the mass hanger. The mass hanger will oscillate as shown in Fig. 2.2.

Fig. 2.2
(ii) Take measurements to determine the period T of the oscillations.

Record T.

$$
\begin{array}{r}
\frac{22.0+22.7}{22} \\
=1.15 .
\end{array}
$$

(iii) Remove the wire from the mass hanger.

(e) (i) Take the longer wire. Repeat (a)(ii) and (a)(iii)

$$
\begin{aligned}
\frac{0.11+0.10+0.10}{3}= & 0.103 \\
=0.10 \mathrm{~mm} & =\ldots(0.10 \pm 0.01) \mathrm{mm} \\
A & =\ldots \quad 0.0079 \mathrm{~mm}^{2}
\end{aligned}
$$

(ii) Secure the hook of the mass hanger to one end of the wire leaving 40 cm of excess wire.
Repeat (b)(ii), (b)(iii), (c)(i) and (d) for a yalue of L of approximately 30 cm .

Your Mark

2(a)(ii) \qquad
\square
2(b)(iii) \square

2(c)(i)

2(c)(ii) \square
2(d)(ii) \square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} .$
(b)(iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c)(i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f) (i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

2(g)(ii) \square

line Classes : Megalecture@gmail.com

w.youtube.com/megalecture

ww.megalecture.com

(f) It is suggested that the relationship between T and C is
$T=k C$
where k is a constant.
(i) Using your data, calculate two values of k.

$$
\begin{aligned}
& 1.1=k(553,000) \\
& 3.3=k(6,920,000)-7 \\
& k=1.99 \times 10^{-6} \\
& \text { first value of } k=\ldots \\
& \text { second value of } k=\ldots \quad 4.77 \times 10^{-7} \mathrm{cms}
\end{aligned}
$$

(ii)

Explain whether your results in (f)(i) support the suggested relationship.

$$
\begin{aligned}
\frac{\left|k_{1}-k_{2}\right|}{k_{1}} & \times 100 \% \\
& =76.03 \%
\end{aligned}
$$

..... No, as the pexcentage untentai uncortginty 76.03% is moxe than $20 . \%$ \qquad
Your Mark

2(a)(ii) \square
2(a)(iii) \square

2(b)(iii) \square

2(c)(ii) \square
2(d)(ii) \square
\square

2(g)(i) \square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} .$
(b)(iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c) (i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f)(i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

2(g)(ii) \square
(g) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.

1. enly two roadings were taken to draw a conclusion wrich is \qquad insufficient. \qquad
2. The loop of ware abound the mass nangerssips.

Hard to mensure

4. Hard to gown determine whem is one....scillation of the mas s hanger.
5. Wirets nut straight, hard-tomestutephewg' paralla \times erwr in [4] measuhug L
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.

1. More roodings should haye been taken and a graph plotted to
get a more accurate conclusith \qquad
2. Use adhesive tape to stick the mive to the mass hanfor.

efip. Straighten wirs by using a mator. 1 and monning the wiere twough. the notor. Tपयाय
3. **e Video, with a fimer. should be used. camera
4. Mark length Lim uire used and masur o before attachivg wive[4] to clip.
[Total: 20]

Your Mark

2(a)(ii) \qquad
\square
$\square$$\square$

w.youtube.com/megalecture

ww.megalecture.com

You may not need to use all of the materials provided.
2 In this experiment, you will investigate the movement of a loaded wire.
(a) (i) Take the shorter of the two wires.
(ii)

Measure and record the dlameter dof the wire.

$$
0.01 \times 38
$$

$d=0.38 \mathrm{~mm}$ \qquad ...[1]

\square
(iii) Calculate the cross-sectional area A of the wire using

$$
A=\bar{A}(0.3-8)^{0.00038}=0.113
$$

$$
1 \mathrm{~m}=1000 \mathrm{~mm}
$$

$$
=0.1 .13 \times 10^{-3}
$$

2(b)(iv) \square

$$
x=0.38
$$

$$
\begin{aligned}
A & =\frac{\pi(0.038)^{2}}{4} \\
& =0.0298
\end{aligned}
$$

$$
0.00038 \mathrm{~m} .
$$

2(c)(i) \square
2(c)(ii) \square
\square
\square

2(g)(i) \square
2(g)(ii) \square
(b) (i) Secure the hook of the mass hanger to one end of the wire leaving at least 20 cm of excess wire.
The wire may be wrapped around the hook several times.
(ii) Set up the apparatus as shown in Fig. 2.1.

The length L of wire between the clip and the hook of the mass hanger should be approximately 15 cm .

Fig. 2.1
(iii)

Measure and record L.

$$
15.40 \mathrm{~cm}
$$

$$
0.152 \mathrm{~m}
$$

$$
\frac{24=2 \mathrm{~cm} 15 \cdot 20 \mathrm{~cm}}{15 \cdot 20 \mathrm{~cm}}
$$

\square
(iv) Estimate the percentage uncertainty in your value of L.

$$
\begin{array}{ll}
\frac{0.2}{24.2} \times 100 & =0 \operatorname{cog} \cdot 1.3 \\
\frac{d 5 e z}{15.40} & =1 \%
\end{array}
$$

2(f)(ii) \square
Your Mark

2(a)(ii) \qquad
\square
2(a)(iii)
2(b)(iii) \square
\square
2(c)(i) \square
2(c)(ii) \square
\square
\square
\square

2(g)(i) \square
2(g)(ii) \square EXAMINER
COMMENTS
(c) (i) Calculate C where
(ii) Justify the number of significant figures that you have given for your value of C.

The xaw value of L and A ase given to
3 significunt figues so \qquad
(d)
(i) Twist the mass hanger through approximately 180°.

Release the mass hanger. The mass hanger will oscillate as shown in Fig. 2.2.

Fig. 2.2
(ii) Take measurements to determine the period T of the oscillations.

Record T.

T_{1} / s	T_{2} / s	T_{3} / s	$T_{\text {ara }} / \mathrm{s}$
33^{2}	1.0	0.96	0.98
6.97			

$$
T=\ldots 3.665 \quad 0.985[1]
$$

(iii) Remove the wire from the mass hanger.

2(g)(ii) \square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b) (iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} .$
(b) (iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c)(i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f)(i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

(e) (i) Take the longer wire. Repeat (a)(ii) and (a)(iii).
(ii) Secure the hook of the mass hanger to one end of the wire leaving 40 cm of excess wire.
Repeat (b)(ii), (b)(iii), (c)(i) and (d) for a value of L of approximately 30 cm .

$$
c=\frac{\sqrt{15.20}}{1.13 \times 10^{-3}}
$$

$T_{1 / 5}$	T_{2} / s	T_{3} / s	$T_{\text {Tows }} / \mathrm{s}$
3.67	3.65	3.66	3.66

\qquad
2(a)(iii) \square
2(b)(iii) \square
2(b)(iv) \square
2(c)(i) \square
2(c)(ii) \square
2(d)(ii) \square
\square

[3]

Your Mark
 2(a)(ii)
 \square
 \square

02 Mark scheme

(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm\quad [1]		
(a)(iii)	Correct calculation of A with consistent unit and power of ten.	[1]	

(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm}$.

(b)(iv) Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm .
If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown.
Correct method of calculation to obtain percentage uncertainty.
(c)(i) Correct calculation of C to the s.f. given by the candidate.[1]

(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d)(ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.$\quad[1]$

(e)(ii) \quad Second values of d and L. Second value of T.
Quality:
If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
2(f)(ii) \square
2(g)(i) \square

2(g)(ii) \square

w.youtube.com/megalecture

ww.megalecture.com

(f) It is suggested that the relationship between T and C is

$$
T=k C
$$

where k is a constant.
(i) Using your đata, catculate two values of k.

$$
\begin{aligned}
k_{1} & =\frac{C}{T} & k_{2} & =\frac{C}{T} \\
k_{1} & =\frac{3470}{0.98} & & =\frac{3450}{3.66} \\
& =3540 & & 943 \\
& & & 3540
\end{aligned}
$$

(ii) Explain whether your results in (f)(i) support the suggested relationship.

$$
\frac{3540-943}{3540} \times 100=0039.73 \%
$$

Your Mark

2(a)(ii) \qquad
2(a)(iii) \square
2(b) (iii) \square
\square
2(c)(i)

\square
2(d)(ii) \square
2(e)(ii) \square
2(f)(i) \square
\square
2(g)(i) \square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b) (iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} .$
(b) (iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c)(i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f)(i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

2(g)(ii) \square
(g) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.

1. Two sets of readifs one not enotigh
2. Diffcult to messuse the T besur for shorter ...wive becauve it stops rolation veny quickly an spred ar arato
3. The fans in the xoan affected rotation because
.... uire is thin and light weight so it moved by wind as web.
4. The longen wire was vesy thin it breaks whon... the dip is tight on ce if it is clipped soveral
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
1...Take more readi-fs and plat plot agraph or compare . . . values with more readings
 ...amera to fo..... find T.
5. Tur off the fans while doing the experineul.
6. HSe a small ball of ctay use a cork and
a $\frac{\text { s small }}{}$ ball of day to harg the wire
instead of the clip.

Your Mark

2(a)(ii) \square
2(a)(iii) \square
\square
2(b)(iv) \square
2(c)(i) \square

2(c)(ii) \square
\square
\square
2(f)(i) \square
\square

2(g)(i) \square

2(g)(ii) \square

(g)	(i) Limitations [4]	(ii) Improvements [4]	Do not credit
A	Two readings not enough to draw a conclusion	Take many readings and plot a graph/ obtain more k values and compare	"Repeat readings" on its own/few readings/only one reading/not enough readings for accurate value
B	Difficult to judge beginning and/or end of a cycle/a complete cycle	Draw a line/mark on the mass/ (fiducial) marker at equilibrium position	
C	Wire not straight/ kinked	Method of straightening wire e.g. use larger mass	
D	Difficult to measure \underline{L} with reason e.g. metre rule awkward to position/parallax error	Improved method of measuring L e.g. marking L before putting into clip/ detailed method using set squares or ruler/ use a length guide (e.g. 15 cm wood)/ use string with detail/ use tape measure	Vernier calipers on its own/ set square on its own/ 30 cm ruler on its own
E	Wire slips (in clip)	Better method of gripping wire e.g wrap wire around clamp/use two wooden blocks and wire	Any reference to attaching the mass to the wire
F	Mass swings as well as rotates/ clip moves around rod/there is a force on release	Better method of attaching clip to rod e.g. glue	
G	Shorter/thicker wire has too few cycles/dampens quickly/ (percentage) uncertainty greater for shorter/thicker wire	Video and timer/replay frame by frame	Repeats Longer wire

ww.youtube.com/megalecture

ww.megalecture.com

You may not need to use all of the materials provided.

2 In this experiment, you will investigate the movement of a loaded wire.
(a) (i) Take the shorter of the two wires.
(ii)

Measure and record the diameter d of the wire.

$$
\begin{aligned}
\text { diameter } & =\frac{0.2+0.3+0.4}{3} \\
& =0.3
\end{aligned}
$$

0.03 mm \qquad

(iii) Calculate the cross-sectional area A of the wire using

$$
\begin{aligned}
A & =\frac{\pi(0.03)^{2}}{4} \\
& =7.07 \times 10^{-4}
\end{aligned}
$$

$$
A=\quad 7: 0.7 \times 10^{-4} \mathrm{~mm}^{2}
$$

$$
\text { 2(c)(ii) } \square
$$

\square
\square

$$
\text { 2(f)(i) } \square
$$

$$
\text { 2(f)(ii) } \square
$$

$$
2(\mathrm{~g})(\mathrm{i})
$$

\square
2(g)(ii) \square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b) (iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} \text {. }$
(b)(iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c)(i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f) (i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

ww.youtube.com/megalecture

www.megalecture.com

(b) (i) Secure the hook of the mass hanger to one end of the wire leaving at least 20 cm of
\square
excess wire.
The wire may be wrapped around the hook several times.
(ii) Set up the apparatus as shown in Fig. 2.1.

The length L of wire between the clip and the hook of the mass hanger should be approximately 15 cm .

Fig. 2.1
Measure and record L.

19075

(iv) Estimate the percientage uncertainty in your value of L.

$$
\begin{aligned}
\text { Perceutage Uncutainty } & =\frac{\Delta L}{2} \times 100 \% \\
& =\frac{0.1}{14.5} \times 150 \%
\end{aligned}
$$

(7) approximaly 15 cm .

$$
\left.L=\frac{14+15+14.5}{3} \quad L=\quad \text {. } \quad L 1\right]
$$

$$
\text { percentage uncertainty }=\ldots \quad 0 . \quad 0 \cdot 689 y_{A} \ldots \ldots \ldots . . .
$$

Your Mark

2(a)(ii) \qquad
2(a)(iii) \square
2(b)(iii) \square
2(b)(iv) \square
2(c)(i) \square
2(c)(ii) \square
2(d)(ii) \square
2(e)(ii) \square
2(f)(i) \square
2(f)(ii) \square

2(g)(i) \qquad

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} .$
(b) (iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c) (i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f)(i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

2(g)(ii) \square

www.megalecture.com

(c) (i) Calculate C where

$$
\begin{aligned}
C= & \frac{\sqrt{14.5 \times 10^{-1}}}{7.07 \times 10^{-4}} \\
& =1.70 \times 10^{3}
\end{aligned}
$$

(ii) Justify the number of significant figures that you have given for your value of C.

I've used threa slenificaut fingune As.. all my value of L and A are
in thenes slenificant fiqure. \qquad
(d) (i) Twist the mass hanger through approximately 180°

Release the mass hanger. The mass hanger will oscillate as shown in Fig-2.2.

Fig. 2.2
(ii) Take measurements to determine the period T of the oscillations.

Record T.
Time taken for 10 oscillation P6pl) $=10.63$. Time talen for 1 oscillation(t) $=1.063$.
Time taken for 10 oscillation $=12.78$

Time taven for 1 oscillation $\left(t_{2}\right)$ \qquad .[1] \square
Your
Mark
2(a)(ii) \square

02 Mark scheme

\square
2(a)(iii)
2(b)(iii) \square

(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm [1]
(a)(iii)	Correct calculation of mith .

[1]

$$
c=\quad 1.76 \times 10^{3}
$$

(a)(iii) $\begin{aligned} & \text { Correct calculation of } \mathrm{A} \text { with consistent unit and power } \\ & \text { of ten. }\end{aligned}$

2(b) (iv) \square
2(c)(i)

(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm}$.	[1]

2(c)(ii) \square

$$
\text { 2(d) (ii) } \square
$$

2(e)(ii) \square
2(f)(i) \square

(b)(iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm. If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown.
Correct mothod of calation	

2(f)(ii) \square
2(g)(i) \qquad
(iii) Remove the wire from the mass hanger.

w.youtube.com/megalecture

ww.megalecture.com

(e) (i) Take the longer wire. Repeat (a)(ii) and (a)(iii).

$$
\begin{array}{ll}
d=\frac{0.1+0.2}{2} & d=\ldots .0 .015 \mathrm{~mm} \\
A=\frac{\pi(0.015)^{2}}{4} & A=\ldots .1 .76 \times 10^{-4} \mathrm{~m}^{2}
\end{array}
$$

(ii) Secure the hook of the mass hanger to one end of the wire leaving 40 cm of excess wire.
Repeat (b)(ii), (b)(iii), (c)(i) and (d) for a value of L of approximately 30 cm .

$$
L=\frac{29 \cdot 5+30+29}{3}
$$

$$
L=\ldots 29.5 \mathrm{~cm}
$$

\qquad

$$
N=2+20+1
$$

$$
\begin{aligned}
C & =\frac{\sqrt{29.5} \times 10^{-1}}{1.76 \times 10^{-4}} \\
& =9.76 \times 10^{3}
\end{aligned}
$$

Time taken for 10 oscillation $=13.78$
Time talen for 1 osullation $\left(t_{0}\right)=1.378$
Time talun for 10 o sullation $=13.22$.

$$
T=\frac{t_{1} t t_{2}}{2}
$$

Time taunfort oscillation $\left(t_{2}\right)=1.322$

$$
\begin{aligned}
C_{2} & =1.322 \\
T & =
\end{aligned}
$$

$$
1.3 .5
$$

$$
\text { 2(c)(ii) } \square
$$

Your Mark

2(a)(ii) \square
2(a)(iii) \square
\square
\square

$$
2(c)(i)
$$

\square

2(d)(ii) \square
2(e)(ii) \square
\square

$$
2(f)(\mathrm{ii})
$$

\square

2(g)(i) \square

Mark scheme

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm}$.
(b)(iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c)(i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f) (i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

2(g)(ii) \square

w.youtube.com/megalecture

ww.megalecture.com

(f) It is suggested that the relationship between T and C is
$T=K C$
where k is a constant.
(i) Using your data, calculate two values of k. for first value.
$T=K C$
$1.17=K \times 1.70 \times 10^{3}$

$$
k=6.88 \times 10^{-4}
$$

(ii) Explain whether your results in (f)(i) support the suggested relationship.

The result loses supports the relationship belarse as the value of.... K increaxes the ialue of T also ineneares with it..... \qquad ...[1]
[1]
For second value.
$T=K C$.
$1.35^{1}=K \times 9.76 \times 10^{3}$ $k=1.88 \times 10^{-4}$

$$
\begin{aligned}
& \text { first value of } k=\frac{6 \cdot 88 \times 10^{-4}}{1.38 \times 10^{-4}} \\
& \text { fecond value of } k=\ldots \ldots .1 .1 .1 \times 10^{-4}
\end{aligned}
$$

Your

2(a)(ii) \qquad
2(a)(iii) \square
2(b)(iii) \square
2(b)(iv) \square
\square
2(c)(ii) \square
2(d)(ii) \square

\square
2(f)(i)
2(f)(ii) \square
2(g)(i) \square

02	Mark scheme
(a)(ii)	All raw values of d either to the nearest 0.01 or 0.001 mm with unit and in the range 0.250 mm to 0.450 mm
(a)(iii)	Correct calculation of A with consistent unit and power of ten.
(b)(iii)	Value of L with appropriate unit in range $10.0 \mathrm{~cm} \leq L \leq 20.0 \mathrm{~cm} \text {. }$
(b) (iv)	Percentage uncertainty in L based on absolute uncertainty of 2 mm to 8 mm . If repeated readings have been taken, then the uncertainty can be half the range (but not zero) if the working is clearly shown. Correct method of calculation to obtain percentage uncertainty.
(c)(i)	Correct calculation of C to the s.f. given by the candidate.
(c)(ii)	Correct justification for s.f. in C linked to s.f. in d and L. [1]
(d) (ii)	Raw values for time to the nearest 0.1 s or better. T with unit and in range $0.5 \mathrm{~s} \leq T \leq 2.0 \mathrm{~s}$.
(e)(ii)	Second values of d and L. Second value of T. Quality: If $d_{1}>d_{2}$ then second value of $T>$ first value of T.
(f) (i)	Two values of k calculated correctly. [1]
(f)(ii)	Sensible comment relating to the calculated values of k, testing against a criterion specified by the candidate.

2(g)(ii) \square
(g) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment.

1. Two sets of of data are not enough... to draw conclusion.
2. Parad. Error while seeing the Oscillation.,
3. The angle of rotation might not be approximately 120°.
4. The wire at the clip enesse brings error ushile es rotating.
(ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.
5. Aleast st x sets of veading is requi ned...... and plot its graph.
6. Do Sensor must be used for vieuving the wire while it goes back and forth.
7. Protractar must be used to while... rotating
8. The wive must be gheed at the top.so so that it doesnot move while rotating.

Your
\square
2(a)(ii)
\square
\square
2(b)(iv) \square
\square
2(c)(ii) \square
\square

2(g)(ii) \square

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 1
 Cambridge International AS \& A Level
 Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

1 A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1.

Fig. 1.1
The stars are in circular orbits with the centres of both orbits at point P, a distance d from the centre of star A.
(a) (i) Explain why the centripetal force acting on both stars has the same magnitude.

 $=$ in $\left(\frac{2 \pi}{T}\right)^{2} d^{2}$ The angular velocsity w and perion in of both Stass are the same. So the centripetal force (and gravitational) The period of the orbit of the stars about point P Is 4.0 years. foreds) for both stars Calculate the angular speed ω of the stars. ase the same.

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{4 \times 365 \times 24 \times 3600}
$$

$$
=4.98 \times 10^{-8} \mathrm{rads}^{-1}
$$

$$
\omega=\ldots+\ldots
$$

(b) The separation of the centres of the stars is $2.8 \times 10^{8} \mathrm{~km}$. The mass of star A is M_{A}. The mass of star B is M_{B}.
The ratio $\frac{M_{\mathrm{A}}}{M_{\mathrm{B}}}$ is 3.0 .
(i) Determine the distance d.
$\because \omega, T, F_{c}$ are the same for A and B
$\therefore \quad M_{A} \delta^{2} \alpha=M_{B} y 0^{2}\left(2.8 \times 10^{8}-\alpha\right)$.

$$
\therefore-\frac{M A}{M B}=\frac{2.8 \times 10^{8}-\alpha}{d}=3
$$

$$
\therefore d=7.0 \times 10^{7} \mathrm{~km}
$$

$$
a=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

(ii) Use your answers in (a)(ii) and (b)(i) to determine the mass M_{3} of star B. Explain your working.

$$
\therefore \quad \frac{\because M A+2}{M B}
$$

H
$\left.=\left(7 \times 10^{7}\right) M A \quad \therefore 3 M-7 \times 10^{7}\right) \quad M 0 \times\left(28 x 0^{8}-7 \times 0^{-7}\right.$
$f \mathcal{L} d_{A}+d_{B} \rightarrow \mathcal{L} \rightarrow d_{A} d_{A}=\mathcal{L}-d_{B}$
$\left\{\begin{array}{l}M_{A} \cdot d A=x 4 i-d B\end{array}\right.$

$\because \frac{M A}{M_{B}}=3 \quad \therefore \quad M A=3 M B$
$\therefore G \frac{3 M_{B} \cdot M_{B}}{L^{2}}=M_{B} \omega^{2} \mathcal{L}$

$$
6.67 \times 10^{-11} \times \frac{3 M_{B}}{\left(2.8 \times 10^{8} \times 10^{3}\right)^{2}}=\left(4.98 \times 10^{-8}\right)^{2} \times\left(2.8 \times 10^{8} \times\right.
$$

$$
M_{B}=2.72 \times 10^{29} \mathrm{lg}
$$

1(a)(ii) \square

1 A binary star consists of two stars. A and B that orbit one another, as illustrated in Fig. 1.1.

The stars are in circular orbits with the centres of both orbits at point P, a distance d from the centre of star A.
(a) (i) Explain why the centripetal force acting on both stars has the same magnitude.
 zord otestofntion Then act as point masses

(ii) The period of the orbit of the stars about point P is 4.0 years.

Calculate the angular speed ω of the stars.

$$
\begin{aligned}
=\frac{\partial_{\pi}}{T} & =\frac{\partial \pi f}{}=\frac{\partial \pi}{4 \times 365 \times 2 u_{7}} \\
\omega=\frac{\partial_{\pi}}{T} & =4.98 \times 10^{-8} \\
& =4 . .98 \times 10^{-8}
\end{aligned}
$$

(b) The separation of the centres of the stars is $2.8 \times 10^{8} \mathrm{~km}$. The mass of star A is M_{A}. The mass of star B is M_{B}.
The ratio $\frac{M_{\mathrm{A}}}{M_{\mathrm{B}}}$ is 3.0.
Fe force.
(i) Determine the distance d.

$$
\begin{aligned}
& M_{A} \times d \times \omega^{2}=M_{\beta} \times\left(2.8 \times 10^{8} \sim d\right) \omega^{2} \\
& \begin{aligned}
: M_{A} \times d \times u D^{2} & =\left(2.8 \times 10^{8}-d\right) y^{2}: \\
& =0 .
\end{aligned} \\
& 3 \times d=2.8 \times 10^{\circ} \cdots+10^{\circ} \cdot \cdots \quad \cdots \\
& \begin{aligned}
& 3 d+d=2.8 \times 10^{8} \\
& 7.0 \times 10^{-7} \mathrm{~km} .
\end{aligned} \\
& d=, 7.0 \times 10^{7} \\
& \text {.km [3] } \\
& \text { (ii) Use your answers in (a)(ii) and (b)(i) to determine the mass } M_{\mathrm{B}} \text { of star } \mathrm{B} \text {. }
\end{aligned}
$$ Explain your working.

$$
F C=m+W^{2} . \quad r=0.1 \times 10^{8} \mathrm{~km}
$$

$$
\begin{aligned}
& \text { er. } \omega^{2}:=\frac{G M_{D} A}{1^{2}} \\
& \left(70.0 \times 10^{7}\right) \times\left(40.918 \times 10^{-8}\right)^{2}=\frac{\left(6.67 \times 10^{-11}\right)\left(\mathrm{M}_{4}^{2}\right)}{\left(7.0 \times 10^{4}\right)^{2}} \\
& \left.\frac{\left(2.6 \times 10^{3}\right.}{3}\right)=M_{B} \cdot 8.70 \\
& \begin{array}{l}
2602.7 \\
2600
\end{array} 2.6 \times 10^{3} \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \text { [Total: 10] }
\end{aligned}
$$

ww.megalecture.com

1 A binary star consists of two stars A and B that orbit one another, as illustrated in Fig. 1.1.

Fig. 1.1
The stars are in circular orbits with the centres of both orbits at point P, a distance d from the centre of star A.
(a) (i) Explain why the centripetal force acting on both stars has the same magnitude.

Th Tope
......The......forces...... of,......enn.........bath.......stans.......ane a \qquad
cemple......The (t) Th. Ease........ is.......
 fores $=$ force on easts one x the distance \qquad [2]
(ii) The period of the orbit of the stars about point P is 4.0 years. them, which are Calculate the angular speed ω of the stars. same.

$$
\begin{array}{rlrl}
\omega & =\frac{2 \pi}{T} & T & =4 \times 365 \times 24 \times 60 \times 60 \\
& =\frac{2 \pi}{126144000} & & =126144000 \mathrm{~s} \\
& =4.98 \times 10^{-8} & \\
& =6.0 \times 10^{-8} &
\end{array}
$$

line Classes : Megalecture@gmail.com

ww.megalecture.com
(b) The separation of the centres of the stars is $2.8 \times 10^{8} \mathrm{~km}$.

The mass of star A is M_{A}. The mass of star B is M_{B}.
The ratio $\frac{M_{A}}{M_{B}}$ is 3.0.
(i) Determine the distance d.

$$
E / /(x)=F / 4(B) \quad M_{m}^{m} \quad \frac{M_{m}}{r}=F \times d
$$

, ($\left.F_{\varphi p}=F_{i p}\right) \longrightarrow F_{n}=F_{n}$
$\int_{-\frac{M r}{r^{2}}}$
$=\frac{\mathrm{ChMm}_{2}}{r^{2}}$
$3=\left(2.8 \times 10^{8}\right)^{2}$
$\frac{M_{A}}{r^{2}}=\frac{M_{B}}{r^{2}}$

$$
\frac{M_{A}}{M_{B}}=\frac{r^{2}}{r^{2}}
$$

$d=1.6 \times 10^{8}$
km [3]
(ii) Use your answers in (a)(ii) and (b)(i) to determine the mass M_{B} of star B Explain your working.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 4 Cambridge International AS \& A Level Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

4 A metal block hangs vertically from one end of a spring. The other end of the spring is tied to a thread that passes over a pulley and is attached to a vibrator, as shown in Fig. 4.1.

Fig. 4.1

(a) The vibrator is switched off.

The metal block of mass 120 g is displaced vertically and then released. The variation with time t of the displacement y of the block from its equilibrium position is shown in Fig. 4.2.

Fig. 4.2
For the vibrations of the block, calculate
(i) the angular frequency ω,

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.6}
$$

A $\omega=10.47$

$$
\text { (ii) the energy of the vibrations. } \begin{aligned}
E & =\frac{1}{2} m\left(\omega \sqrt{x_{0}^{2}-x^{2}}\right)^{2} \\
& =\frac{1}{2} m \omega^{2} x_{0}^{2} \\
& =\frac{1}{2} \times 120 \times 10^{-3} \times(10.47)^{2} \times\left(2 \times 10^{-2}\right)^{2} \\
& =2.631 \times 10^{-3}
\end{aligned}
$$

energy = \qquad 2.6×10^{-3} 0^{-3}J [2]
(b) The vibrator is now switched on.

The frequency of vibration is varied from $0.7 f$ to $1.3 f$ where f is the frequency of vibration of the block in (a).

For the block, complete Fig. 4.3 to show the variation with frequency of the amplitude of vibration. Label this line A.

Fig. 4.3
(c) Some light feathers are now attached to the block in (b) to increase air resistance.

The frequency of vibration is once again varied from $0.7 f$ to $1.3 f$. The new amplitude of vibration is measured for each frequency.

On Fig. 4.3, draw a line to show the variation with frequency of the amplitude of vibration. Label this line B.

MEGA LECTURE

4 A metal block hangs vertically from one end of a spring. The other end of the spring is tied to a thread that passes over a pulley and is attached to a vibrator, as shown in Fig. 4.1.

(a) The vibrator is switched off.

The metal block of mass 120 g is displaced vertically and then released. The variation with time t of the displacement y of the block from its equilibrium position is shown in Fig. 4.2.

Fig. 4.2
For the vibrations of the block, calculate
(i) the angular frequency ω, \checkmark.

$$
=1 / 0.6=f=1.67 \mathrm{~Hz} .
$$

$\omega=2 \pi f$

$$
=10.5
$$

ww.youtube.com/megalecture
 www.megalecture.com

line Classes : Megalecture@gmail.com
(ii) the energy of the vibrations.

$$
\begin{aligned}
T \cdot E= & 1 / 2 m x_{0}^{2} w^{2} \\
& =1 / 2(0.12)\left(2 \times 10^{-2}\right)^{2}(10.5)^{2} \\
& =2.646 \times 10^{-3}
\end{aligned}
$$

$$
\text { energy }=\ldots 2.65 \times 10^{-3}
$$

(b) The vibrator is now switched on.

The frequency of vibration is varied from $0.7 f$ to $1.3 f$ where f is the frequency of vibration of the block in (a).

For the block, complete Fig. 4.3 to show the variation with frequency of the amplitude of vibration. Label this line A.

Fig. 4.3
(c) Some light feathers are now attached to the block in (b) to increase air resistance.

The frequency of vibration is once again varied from $0.7 f$ to $1.3 f$. The new amplitude of vibration is measured for each frequency.

On Fig. 4.3, draw a line to show the variation with frequency of the amplitude of vibration. Label this line B.

4 A metal block hangs vertically from one end of a spring. The other end of the spring is tied to a thread that passes over a.pullicy and is attached to a vibrator, as shown in Fig.4.1.

Fig. 4.1
(a) The vibrator is switched off.

The metal block of mass 120 g is displaced vertically and then released. The variation with time t of the displacement y of the block from its equilibrium position is shown in Fig. 4.2.

Fig. 4.2
For the vibrations of the block, calculate
(i) the angular frequency $\omega_{\text {, }}$

$$
\begin{aligned}
\omega & =\frac{2 \pi}{\pi} \\
& =\frac{2 \pi}{0.6} \\
& =
\end{aligned}
$$

MEGALECTURE

ww.youtube.com/megalecture

line Classes : Megalecture@gmail.com

ww.megalecture.com

(ii) the energy of the vibrations.

$$
\begin{aligned}
& \frac{1}{2} \times m \times \omega^{2} \\
= & \frac{1}{2} \times 0.12 \times(10.47)^{2} \\
= & 0.06 \times 109.6=6.58
\end{aligned}
$$

energy = \qquad 6.5. 8 \qquad
(b) The vibrator is now switched on.

The frequency of vibration is varied from $0.7 f$ to $1.3 f$ where f is the frequency of vibration of the block in (a).
For the block, complete Fig. 4.3 to show the variation with frequency of the amplitude of vibration. Label this line A.

Fig. 4.3
(c) Some light feathers are now attached to the block in (b) to increase air resistance.

The frequency of vibration is once again varied from $0.7 f$ to $1.3 f$. The new amplitude of vibration is measured for each frequency.
On Fig. 4.3, draw a line to show the variation with frequency of the amplitude of vibration. Label this line B.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses Paper 4 (May/June 2016), Question 6 Cambridge International AS \& A Level Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

6 (a) By reference to electric field lines, explain why, for points outside an isolated spherical conductor, the charge on the sphere may be considered to act as a point charge at its centre.

 point......in the centre.......the sphere The electric fiseld...... lines show the shongth. of flhe.enerbic. Field, which...is.sman........ [2] concentwated in the centre. Thus all the charge is (b) Two isolated protons are separated in a vacuum by a distance x. considere to out (i) Calculate the ratio at its $\frac{\text { electric force between the two protons }}{\text { gravitational force between the two protons }}$.
$F=E \frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left(1.60 \times 10^{-19}\right)^{2}}{4 \pi \varepsilon_{0} x^{2}}$
$F=\frac{G M m}{r^{2}}=\frac{6.67 \times 10^{-4} \times\left(1.67 \times 10^{-277}\right)^{2}}{x^{2}}$

$$
\frac{\left(1.60 \times 10^{-19}\right)^{2}}{4 \pi \varepsilon_{0} x^{2}} \div \frac{6.67 \times 10^{-11} \times\left(1.67 \times 10^{-27}\right)^{2}}{7^{2}}
$$

$12 \frac{2.56 \times 10^{.78}}{1.11 \times 10.11}$ \times $\frac{2.56 \times 10^{-38}}{2.08 \times 10^{-74}}=1.24 \times 10^{36}$ ratio $=$ \qquad
(ii) By reference to your answer in (i), suggest why gravitational forces are not considered when calculating the force between charged particles.
....Thegnausitiotional..... forces ane negligalale compared. to......the........fonce......betusees....charges...(1.24x10.........7)....... [1] [Total: 6]

6(a)	(a)	Mark scheme	
		lines perpendicular to surface or lines are radial lines appear to come from centre	M1 A1 [2]
	(b)(i)	$\begin{aligned} & F_{E}=\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi \varepsilon_{0} \times^{2} \\ & F_{G}=G \times\left(1.67 \times 10^{-27}\right)^{2} / x^{2} \\ & F_{E} / F_{G}=\left(1.6 \times 10^{-19}\right)^{2} \times\left(8.99 \times 10^{9}\right) / \\ & \\ & \quad\left[\left(1.67 \times 10^{-27}\right)^{2} \times\left(6.67 \times 10^{-11}\right)\right] \\ & =1.2(1.24) \times 1036 \end{aligned}$	C1 C1 A1 [3]
6(b)(i)	(b) (ii)	$F_{E} \gg F_{G}$	$\begin{array}{r} \text { B1 [1] } \\ \text { [Total: 6] } \end{array}$

6(b)(ii) \square
line Classes : Megalecture@gmail.com

6 (a) By reference to electric field lines, explain why, for points outside an isolated spherical conductor, the charge on the sphere may be considered to act as a point charge at its centre.
 reutfor tace on charg. With routort tha, the is tiod acting ou the .clage: \qquad
(b) Two isolated protons are separated in a vacuum by a distance x.
(i) Calculate the ratio

$$
\frac{\text { electric force between the two protons }}{\text { gravitational force between the two protons. }}=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0}}=\frac{\mathrm{GH}_{1} M_{2}}{x^{2}}
$$ gravitational force between the two protons

$$
\begin{aligned}
& =\frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi\left(8.5 \times 10^{-2}\right) x^{2}} \div \frac{6.67 \times 10^{-1}\left(1.67 \times 10^{-27}\right)^{2}}{x^{2}} \\
& =\frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi\left(1.35 \times 10^{-2}\right)^{-1}} \times \frac{1}{6.67 \times 10^{-11}\left(1.67 \times 10^{-37}\right)^{2}} \\
& =1.24 \times 10^{36},(38)
\end{aligned}
$$

$$
\text { ratio }=\ldots \ldots \ldots . .-1
$$

(ii) By reference to your answer in (i), suggest why gravitational forces are not considered when calculating the force between charged particles.
A it to mall ampeed to detace that ine now in big. \qquad

Select

a)			
		Mark scheme	
	(a)	lines perpendicular to surface or lines are radial lines appear to come from centre	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$
	(b)(i)	$\begin{aligned} & F_{E}=\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi \varepsilon_{0} \times^{2} \\ & F_{G}=G \times\left(1.67 \times 10^{-27}\right)^{2} / x^{2} \\ & F_{E} / F_{G}=\left(1.6 \times 10^{-19}\right)^{2} \times\left(8.99 \times 10^{9}\right) / \\ & \\ & = \\ & \quad\left[\left(1.67 \times 10^{-27}\right)^{2} \times\left(6.67 \times 10^{-11}\right)\right] \\ & \quad 1.24) \times 1036 \end{aligned}$	C1 C1 A1 [3]
6(b)(i)	(b) (ii)	$F_{E} \gg F_{G}$	B1 [1] [Total: 6]

6(b)(ii) \square

6 (a) By reference to electric field lines, explain why, for points outside an isolated spherical conductor, the charge on the sphere may be considered to act as a point charge at its centre.

 \qquad
(b) Two isolated protons are separated in a vacuum by a distance x.
(i) Calculate the ratio

$$
\frac{\text { electric force between the two protons }}{\text { gravitational force between the two protons }}
$$

$$
\begin{aligned}
& =\frac{K Q Q_{2}}{x^{2}} \div \frac{G_{1} M M_{2}}{x^{2}} \\
& =\frac{k Q Q_{2}}{x^{2}} \times \frac{x^{2}}{G M_{1} M_{2}} \\
& =\frac{1}{4 \times \varepsilon_{0}} \times\left(1.6 \times 10^{18}\right)^{2} \\
& 6.62 \times 10^{-11} \times 2\left(1.67 \times 10^{-27}\right)
\end{aligned}=\frac{2.3 \times 10^{48}}{2.2 \times 10^{-37}}
$$

$$
\begin{equation*}
\text { ratio }=\ldots . .1 .03 \tag{3}
\end{equation*}
$$

(ii) By reference to your answer in (i), suggest why gravitational forces are not considered when calculating the force between charged particles.
 ...dna formises.is.....nne. \qquad . [1]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 12 Cambridge International AS \& A Level Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

12 High-energy electrons collide with a metal target, producing X -ray photons.
The variation with wavelength of the intensity of the X-ray beam is illustrated in Fig. 12.1.

Fig. 12.1
(a) Explain why there is
(i) a continuous distribution of wavelengthes ${ }_{\text {ond }}$

 .. [3]
(ii) a sharp cut-off at short wavelength,
 \qquad $\ldots .$.
(iii) a series of peaks superimposed on the continuous distribution of wavelengths.
 smene paks on datribstin gruxt:
(b) In the X -ray imaging of body structures, longer wavelength photons are frequently filtered out of the X-ray beam.
(i) State how this filtering is achievod.

Phac.a allumsinim. they in x-ry ham. \qquad

12(a)(i)	012	Mark scheme	
	(a) (i)	(X-ray) photon produced when electron/charged particle is stopped/accelerated (suddenly) range of accelerations (in target) hence distribution of wavelengths	B1 M1 A1 [3]
	(a)(ii)	electron gives all its energy to one photon electron stopped in single collision	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 [2] } \end{array}$
12(a)(ii)	(a)(iii)	de-excitation of (orbital) electrons in target/anode/metal	B1 [1]
	(b)(i)	aluminium sheet/filter/foil (placed in beam from tube)	B1 [1]
12(a)(iii)	(b)(ii)	(long wavelength X-rays) do not pass through the body	B1 [1] [Total: 8]

12(b)(i) \square

12(b)(iii) \square
(ii) Suggest the reason for this filtering 4 -iay
 bong. \qquad

12 High-energy electrons collide with a metal target, producing X -ray photons.
The variation with wavelength of the intensity of the X -ray beam is illustrated in Fig. 12.1.

Fig. 12.1
(a) Explain why there is
(i) a continuous distribution of wavelengths,

Because there was of dentinuour sande of deaveleraizo
of electugn when they hit metal plate so the x-ays
emitted also had continuous distubutou of wave lengte.

(ii) a sharp cut-off at short wavelength,

It is becaure of the malimum energy/fequenuy.

the netal \& emitting single proton [2]
(iii) a series of peaks superimposed on the continucus distribution of wavelengths.

㩆 is Because of low inpact time of béheren metal \& -ker
eleitore \& a so beeaure of tuansion in metal when electrow
b) In the X-ray imaging of body structures, longer wavelength photons are frequently filtered out of the X-ray beam.
(i) State how this filtering is achieved.

An Aluminuun fiter in plaved in the woyy of X-say beam.
\qquad

012	Mark scheme	
(a)(i)	(X-ray) photon produced when electron/charged particle is stopped/accelerated (suddenly) range of accelerations (in target) hence distribution of wavelengths	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 [3] } \end{aligned}$
(a)(ii)	electron gives all its energy to one photon electron stopped in single collision	$\begin{array}{lr} \hline \text { B1 } & \\ \text { B1 } & \text { [2] } \end{array}$
(a)(iii)	de-excitation of (orbital) electrons in target/anode/metal	B1 [1]
(b)(i)	aluminium sheet/filter/foil (placed in beam from tube)	B1 [1]
(b)(ii)	(long wavelength X-rays) do not pass through the body	B1 [1] [Total: 8]

M E G A L E C T URE

nline Classes : Megalecture@gmail.com ww.youtube.com/megalecture

ww.megalecture.com

(ii) Suggest the reason for this filtering.

[Total: 8]

12 High-energy electrons collide with a metal target, producing X-ray photons.
The variátion with'wavelength'of the ihtensity of the X -ray beam is.illustrated in Fig. 12.1.

Fig. 12.1
(a) Explain why there is
(i) a continuous distribution of wavelengths,

Electrons have various velocities.
High warelength x ray beams are due to low energy ...ebectrons. \qquad
(ii) a sharp cut-off at short wavelength,

Electrons would hav an energy value more than one specific value. (threshold wex * frequency) [2]
(iii) a series of peaks superimposed on the continuous distribution of wavelengths.
.... When a series of electrons hit the metal target and more than one photon is \qquad ... [1]
(b) In the x-ray imeaging of body structures, longer wavelength photons aretrequenty fittered out of the X-ray beam.
(i) State how this filtering is achieved.

12(a)(i)	012	Mark scheme	
	(a)(i)	(X-ray) photon produced when electron/charged particle is stopped/accelerated (suddenly) range of accelerations (in target) hence distribution of wavelengths	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 [3] } \end{aligned}$
	(a)(ii)	electron gives all its energy to one photon electron stopped in single collision	$\begin{aligned} & \text { B1 } \\ & \text { B1 [2] } \end{aligned}$
12(a)(ii)	(a)(iii)	de-excitation of (orbital) electrons in target/anode/metal	B1 [1]
	(b)(i)	aluminium sheet/filter/foil (placed in beam from tube)	B1 [1]
12(a)(iii)	(b)(ii)	(long wavelength X-rays) do not pass through the body	B1 [1] [Total: 8]

12(b)(i) \square

12(b)(iii) \square

MEGALECTURE

line Classes : Megalecture@gmail.com

ww.megalecture.com

(ii) Suggest the reason for this filtering

If obsorbs high wavelength. x ray beams which would be absorbed by the body. [1] and not contribute to the image. [Tota: 8]

Your Mark
\square

12(a)(ii) \square

Q12	Mark scheme	
(a)(i)	(X-ray) photon produced when electron/charged particle is stopped/accelerated (suddenly) range of accelerations (in target) hence distribution of wavelengths	B1 M1 A1 [3]
(a)(ii)	electron gives all its energy to one photon electron stopped in single collision	$\begin{array}{lr} \hline \text { B1 } & \\ \text { B1 [2] } \end{array}$
(a)(iii)	de-excitation of (orbital) electrons in target/anode/metal	B1 [1]
(b)(i)	aluminium sheet/filter/foil (placed in beam from tube)	B1 [1]
(b)(ii)	(long wavelength X-rays) do not pass through the body	B1 [1] [Total: 8]

12(b)(i) \square

12(b)(iii) \square

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 13
 Cambridge International AS \& A Level
 Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

13 (a) Explain what is meant by gamma radiation (y-radiation)
The emission of gamma: particles from a radioactive sample due to spontaneous and ...random nature..........
(b) A source of gamma radiation is placed a fixed distance away from a detector and counter, as illustrated in Fig. 13.1.

Fig. 13.1
A sheet of lead of thickness x is placed between the source and the detector. The average count rate C, corrected for background, is recorded. This is'repeated for different values of x.
The variation with thickness x of $\ln C$ is shown in Fig. 13.2

$$
\begin{aligned}
C & =C_{0} e^{-\mu n} \\
\ln C & =\ln C_{0} e^{-\mu n} \\
\ln C & =-\mu n+\ln C_{0}
\end{aligned}
$$

13(b)

Q13	Mark scheme	M1			
(a)	(photons of) electromagnetic radiation emitted from nuclei	[2]			
(b)	line of best fit drawn recognises μ as given by the gradient of best-fit line or In $C=\ln \mathrm{C}_{0}-\mu x$ $\mu=0.061 \mathrm{~mm}^{-1}\left(\right.$ within $\pm 0.004 \mathrm{~mm}^{-1}$, 1 mark; within $\left.\pm 0.002 \mathrm{~mm}^{-1}, 2 \mathrm{marks}\right)$	B1			
(c)	aluminium is less absorbing (than lead) or gradient of graph would be less M1 so μ is smaller A1	[4]	$	$	[Total: 8]
:---	:---	:---			

w.youtube.com/megalecture
 ww.megalecture.com

line Classes : Megalecture@gmail.com

nline Classes : Megalecture@gmail.com

(c) The value of μ calculated in (b) is for gamma radiation in lead.

Suggest and explain whether the value of μ for aluminium would be the same, greater or smaller.

MEGALECTURE

13 (a) Explain what is meant by gamma radiation (y-radiation).
...... It: is.......the........electromagnetic.......................................

(b) A source of gamma radiation is placed a fixed distance away from a detector and counter, as illustrated in Fig. 13.1.

Fig. 13.1
A sheet of lead of thickness x is placed between the source and the detector.
The average count rate C, corrected for background, is recorded. This is repeated for different values of x.
The variation with thickness x of $\ln C$ is shown in Fig. 13.2.

13(a)	013	Mark scheme	
	(a)	(photons of) electromagnetic radiation emitted from nuclei	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$
	(b)	line of best fit drawn recognises μ as given by the gradient of or $\ln C=\ln C_{0}-\mu x$ $\mu=0.061 \mathrm{~mm}^{-1}$ (within $\pm 0.004 \mathrm{~mm}^{-1}$, 1 mark; within $\pm 0.002 \mathrm{~mm}^{-1}, 2$ marks)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { A2 [4] } \end{aligned}$
13(b)	(c)	aluminium is less absorbing (than lead) or gradient of graph would be less M1 so μ is smaller A1	[2] [Total: 8]

www.youtube.com/megalecture
 \section*{ww.megalecture.com}

line Classes : Megalecture@gmail.com

Fig. 13.2
The absorption of gamma radiation in lead may be represented by the equation

$$
C=C_{0} \mathrm{e}^{-\mu x}
$$

where C_{0} is the count rate for $x=0$ and μ is the linear attenuation (absorption) coefficient. Use Fig. 13.2 to determine the linear attenuation coefficient μ for this gamma radiation in lead.

$$
\begin{aligned}
& \text { C. }=3.855, x=0 \\
& c=3.70, \quad x=3 \mathrm{~cm} . \\
& 3.70=3.855 \times e^{-\gamma(3)} \\
& 0.9598=e^{-13)} \\
& -0.041=-\mu(3) \quad \mu=\ldots \ldots \ldots1 \times 137.1: 37 . \times 10^{-2} \mathrm{~mm}^{-1}[4] \\
& r=\frac{0.041}{3}=0=0.01360 .37 \times 10^{-2}
\end{aligned}
$$

Question 13 continues on the next page.

| Q13 | Mark scheme | M1 |
| :--- | :--- | :--- | :--- |
| (a) | (photons of) electromagnetic radiation
 emitted from nuclei | [2] |
| (b) | line of best fit drawn
 recognises μ as given by the gradient of best-fit line
 or
 In $C=\ln \mathrm{C}_{0}-\mu x$
 $\mu=0.061 \mathrm{~mm}^{-1}$ (within $\pm 0.004 \mathrm{~mm}^{-1}$,
 1 mark; within $\left.\pm 0.002 \mathrm{~mm}^{-1}, 2 \mathrm{marks}\right)$ | B1 |
| (c) | aluminium is less absorbing (than lead)
 or
 gradient of graph would be less M 1
 so μ is smaller A1 | [4] |

MEGALECTURE

nline Classes : Megalecture@gmail.com

 ww.megalecture.com(c) The value of μ calculated in (b) is for gamma radiation in lead.

Suggest and explain whether the value of μ for aluminium would be the same, greater or smaller.
\qquad ... [2]
nline Classes : Megalecture@gmail.com

13 (a) Explain what is meant by gamma radiation (γ-radiation).
Andintisns of high frequency electomagnetic

(b) A source of gamma radiation is placed a fixed distance away from a detector and counter, as illustrated in Fig. 13.1.

Fig. 13.1
A sheet of lead of thickness x is placed between the source and the detector.
The average count rate C, corrected for background, is recorded. This is repeated for different The average count rate C, corrected for background, is recorded. This
values of x. adius feel count
The variation with thickness x of $\ln C$ is shown in Fig. 13.2.

013	Mark scheme
(a)	(photons of) electromagnetic radiation emitted from nuclei
(b)	line of best fit drawn recognises μ as given by the gradient of best-fit line or $\begin{equation*} \ln C=\ln C_{0}-\mu x \tag{B1} \end{equation*}$ $\mu=0.061 \mathrm{~mm}^{-1}$ (within $\pm 0.004 \mathrm{~mm}^{-1}$, 1 mark; within $\pm 0.002 \mathrm{~mm}^{-1}, 2$ marks)
(c)	aluminium is less absorbing (than lead) or gradient of graph would be less M1 so μ is smaller A1

MEGALECTURE

w. . ww.megalecture.com

line Classes : Megalecture@gmail.com

Fig. 13.2
The absorption of gamma radiation in lead may be represented by the equation

$$
C=C_{0} e^{-\mu x}
$$

where C_{0} is the count rate for $x=0$ and μ is the linear attenuation (absorption) coefficient.
Use Fig. 13.2 to determine the linear attenuation coefficient μ for this gamma radiation in load.

$$
\ln c=c_{0} \times \ln e^{-4 x}
$$

$$
\operatorname{Ln} c)=-4 x \times \ln c_{6}
$$

$$
\begin{aligned}
& =-4 x \times \ln C_{0} \quad \frac{3.9-3.15}{0-12} \\
& =-\ln C_{0} \times \mu 1
\end{aligned}
$$

$$
\mu=\ldots-0 .-0.1
$$

Question 13 continues on the next page.

013	Mark scheme
(a)	(photons of) electromagnetic radiation M1 emitted from nuclei A1 [2]
(b)	line of best fit drawn recognises μ as given by the gradient of best-fit line or $\ln C=\ln C_{0}-\mu x$ $\mu=0.061 \mathrm{~mm}^{-1}$ (within $\pm 0.004 \mathrm{~mm}^{-1}$, 1 mark; within $\pm 0.002 \mathrm{~mm}^{-1}, 2$ marks) A2 [4]
(c)	aluminium is less absorbing (than lead) or gradient of graph would be less M1 so μ is smaller A1

MEGA LECTURE

nline Classes : Megalecture@gmail.com

13(a)	013	Mark scheme	
	(a)	(photons of) electromagnetic radiation emitted from nuclei	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$
	(b)	line of best fit drawn recognises μ as given by the gradient of or $\ln C=\ln C_{0}-\mu x$ $\mu=0.061 \mathrm{~mm}^{-1}$ (within $\pm 0.004 \mathrm{~mm}^{-1}$, 1 mark; within $\pm 0.002 \mathrm{~mm}^{-1}, 2$ marks)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { A2 [4] } \end{aligned}$
13(b)	(c)	aluminium is less absorbing (than lead) or gradient of graph would be less M1 so μ is smaller A1	[2] [Total: 8]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Interactive Example Candidate Responses
 Paper 5 (May/June 2016), Question 1
 Cambridge International AS \& A Level
 Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

line Classes : Megalecture@gmail.com

1 A student is investigating the acceleration of a trolley moving up an inclined plane as shown in Fig. 1.1.

Fig. 1.1
The student is investigating the relationship between the acceleration a of the trolley and the angle θ of the inclined plane when a force F is applied to the trolley.

It is suggested that the relationship is

$$
m a=F-(m g \sin \theta+k)
$$

where g is the acceleration of free fall, m is the mass of the trolley and k is a constant.
Design a laboratory experiment to test the relationship between a and θ. Explain how your results could be used to determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to

- the procedure to be followed,
- the measurements to be taken,
- the control of variables,
- the analysis of the data,
- any safety precautions to be taken.

Your

01 Mark scheme

Planning (15 marks)

Defining the problem (2 marks)

P θ is the independent variable and a is the dependent variable, or vary θ and measure a.
P Keep F constant.

Methods of data collection (4 marks)

M Diagram showing inclined plane with labelled support (not if a ruler used as the inclined plane or as vertical support).
M Method to measure angle e.g. use a protractor to measure θ or use a ruler to measure marked distances from which sin θ or θ may be determined. (Allow a labelled protractor in the correct position.)

M Method to measure a time or velocity to determine a, e.g measure the time using a stopwatch, light gate(s) connected to a timer, motion sensor connected to a time display.
M Use a balance to measure the mass of the trolley.

Method of analysis (3 marks)

A Plot a graph of a or Plot a graph of or Plot a graph of ma against $\sin \theta$. against $\mathrm{mg} \sin \theta$

A Relationship is valid if the graph is a straight line and does not pass through the origin
A $k=F-m \times$ (y-intercept) or $k=F-$ (y-intercept) or $k=F-(y$-intercept $)$

Do not allow Ig-lg graphs.

ww.youtube.com/megalecture

D.4fring probe -

- o is the indumbert manille
- a is the dequndent mosinde
- m should be kun indatst by ming the sane tolly.

Maned of sita solution-

- St in the pupates is sham in dingan by clomping
are and of the ramp pith rated stane
- Mouse the anger lehman the loach and sump by

sing a parameter.
- Mouse the lough of the som though nivieh the
thallus manes.
\qquad

 The tie then by the tolly and note the shone in

01 Mark scheme

Planning (15 marks)

Defining the problem (2 marks)

P θ is the independent variable and a is the dependent variable, or vary θ and measure a.
P Keep F constant.

Methods of data collection (4 marks)

M Diagram showing inclined plane with labelled support (not if a ruler used as the inclined plane or as vertical support).
M Method to measure angle e.g. use a protractor to measure θ or use a ruler to measure marked distances from which sin θ or θ may be determined. (Allow a labelled protractor in the correct position.)
M Method to measure a time or velocity to determine a, e.g. measure the time using a stopwatch, light gates) connected to a timer, motion sensor connected to a time display.
M Use a balance to measure the mass of the trolley.

Method of analysis ($\mathbf{3} \mathbf{~ m a r k s}$)

A Plot a graph of a or Plot a graph of or Plot a graph of ma against $\sin \theta$.
or Plot a graph of $\begin{aligned} & \text { against } \mathrm{mg} \sin \end{aligned}$

A Relationship is valid if the graph is a straight line and does not pass through the origin
A $k=F-m \times(y$-intercept) or $k=F-(y$-intercept) or $\mathrm{k}=\mathrm{F}-$ (y -intercept)

Do not allow Ig-lg graphs.
spud it these tire poets using the speed Camera and detericer

- Determine the atcelusution by dividing the change of

- thanh a magnet with the torluy and mother manat with the
 Date molusis is -at to move in the incbiviced ramp:
- Plat a graph of acculestioion against $\sin \theta$
- The given reletioinshyp is true if graph is a straight
line auth decreasing gradient: gradient $=-g$
y-intercept $=\frac{\text { of }}{m} \frac{F-k}{m}$
$\therefore k=(y$ interest $+g) m f-m(y-i n t e r e n t)$

Sole ty precondition -:

Do not touch the tor ole orville it is moving on the sump as it may injure the hands. OW mar thiol rubber glows.

- Use a large prostate to mexinizze error in mousing. θ.
- Charge the angl θ Make hare e changes to the angle θ to howe neaticable change in stecelvation.
- Ribose the tolly fem the same point everytine and use the same length of ramp for determining spade changes ninth tree. The distance should be lose for gamer changes in speed.
- He the sane ramp enerrtine nth minimum friction to here smooth movement of tolly.
The force aphid should Ire sane and there should be no enteral forces life vivid fem fane.

Your
\square

Q1 Mark scheme

Additional detail ($\mathbf{6}$ marks)

Relevant points might include: [6]
1 Keep mass of trolley constant/use same trolley.
2 Correct trigonometry relationship to determine sin $\begin{aligned} & \text { or } \text { 区 using }\end{aligned}$ marked lengths.

3 Use ruler to measure appropriate distance to determine a, e.g. length of slope, length of card for light gate method, position of motion sensor.
4 Equation to determine a from measurements taken appropriately with a as the subject.
5 Measurement of F for a valid method e.g. take reading from newton-meter or from stretched elastic/spring from extension (allow falling weight eng. $F=m g$).
6 Use a constant extension to produce a constant force when using stretched spring/elastic.
7 Method to ensure the inclined plane is the same height each side of the plane or spirit level across plane or ensure force F (or string) is parallel to the plane.
8 Safety precaution linked to falling mass/trolley or spring/elastic breaking (not string).
9 Rearrangement of relationship into $y=m x+c$ e.g. $m a=-m g \sin \theta+(F-k)$ or
$\mathrm{a}=\mathrm{g} \sin \theta+\frac{F-K}{m}$ or correct y-intercept (subject must be y-axis).
10 Repeat experiment for each angle θ to find average for a.
Do not allow vague computer methods.

ww.youtube.com/megalecture
 \section*{www.megalecture.com}

line Classes : Megalecture@gmail.com

1 A student is investigating the acceleration of a trolley moving up an inclined plane as shown in Fig. 1.1.

Fig. 1.1
The student is investigating the relationship between the acceleration a of the trolley and the angle θ of the inclined plane when a force F is applied to the trolley.

It is suggested that the relationship is

$$
m a=F-(m g \sin \theta+k)
$$

where g is the acceleration of free fall, m is the mass of the trolley and k is a constant.
Design a laboratory experiment to test the relationship between a and θ. Explain how your results could be used to determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to

- the procedure to be followed,
- the measurements to be taken,
- the control of variables,
- the analysis of the data,
- any safety precautions to be taken.

$$
a=\frac{F}{m}-g \sin \theta+\frac{k}{m}
$$

Your Mark

01 Mark scheme

Planning (15 marks)

Defining the problem (2 marks)

P θ is the independent variable and a is the dependent variable, or vary θ and measure a.
P Keep F constant.

Methods of data collection (4 marks)

M Diagram showing inclined plane with labelled support (not if a ruler used as the inclined plane or as vertical support).
M Method to measure angle e.g. use a protractor to measure θ or use a ruler to measure marked distances from which sin θ or θ may be determined. (Allow a labelled protractor in the correct position.)

M Method to measure a time or velocity to determine a, e.g. measure the time using a stopwatch, light gate(s) connected to a timer, motion sensor connected to a time display.
M Use a balance to measure the mass of the trolley.

Method of analysis (3 marks)

A Plot a graph of a or Plot a graph of or Plot a graph of ma against $\sin \theta$. ma against $\sin \theta$. against $\mathrm{mg} \sin \theta$

A Relationship is valid if the graph is a straight line and does not pass through the origin
A $k=F-m \times$ (y-intercept) or $k=F-$ (y-intercept) or $\mathrm{k}=\mathrm{F}-$ (y -intercept)

Diagram

Independent variable is the angle θ. \qquad

Your

01 Mark scheme

Planning (15 marks)

Defining the problem (2 marks)

P θ is the independent variable and a is the dependent variable, or vary θ and measure a.
P Keep F constant.

Methods of data collection (4 marks)

M Diagram showing inclined plane with labelled support (not if a ruler used as the inclined plane or as vertical support).
M Method to measure angle egg. use a protractor to measure θ or use a ruler to measure marked distances from which sin θ or θ may be determined. (Allow a labelled protractor in the correct position.)
M Method to measure a time or velocity to determine a, egg. measure the time using a stopwatch, light gates) connected to a timer, motion sensor connected to a time display.
M Use a balance to measure the mass of the trolley.

Method of analysis (3 marks)

A Plot a graph of a or Plot a graph of or Plot a graph of ma against $\sin \theta$. against $\mathrm{mg} \sin \theta$

A Relationship is valid if the graph is a straight line and does not pass through the origin
A $k=F-m \times(y$-intercept) or $k=F-$ (y-intercept) or $\mathrm{k}=\mathrm{F}-$ (y -intercept)

Do not allow Ig-lg graphs.

Atlas of the object Weight of the object ...aah be measured by a newton metre and that will be our constant for ce.
Tocakulate velocity we will use light gates and a data logger.
We sill manure the time using a stoputch.
Time taken between the two light

We will divide the velocity by time to find acceleration.
Angle can be measured using trigonometry by Finding base and height using metre rule. $\operatorname{Tan}^{-1}\left(\frac{n}{b}\right)$
The lengths should be varied for a differ rent
angle.
We will plot a graph of a against θ
Astraight line passing through the origin
sill confirm the relationship.
The y intercept will be $\frac{F_{t k}}{m}$, Fond mare constant so we an find K.
For safety we should keep our feet a Lay from the object as velet it go.

The angle canalso be taken out using a protractor
A smooth Surface with little friction should be used.
We should take a large range of values
for θ. for better outcome
Acceleration can be Correl out also by making free body diagrams for the object and

Your

01 Mark scheme

Additional detail (6 marks)

Relevant points might include: [6]
1 Keep mass of trolley constant/use same trolley.
2 Correct trigonometry relationship to determine sin $\begin{aligned} & \text { or } \boxtimes \text { using }\end{aligned}$ marked lengths.
3 Use ruler to measure appropriate distance to determine a, e.g. length of slope, length of card for light gate method, position of motion sensor.
4 Equation to determine a from measurements taken appropriately with a as the subject.
5 Measurement of F for a valid method e.g. take reading from newton-meter or from stretched elastic/spring from extension (allow falling weight egg. $F=m g$).
6 Use a constant extension to produce a constant force when using stretched spring/elastic.
7 Method to ensure the inclined plane is the same height each side of the plane or spirit level across plane or ensure force F (or string) is parallel to the plane.
8 Safety precaution linked to falling mass/trolley or spring/elastic breaking (not string).
9 Rearrangement of relationship into $y=m x+c$ e.g. $m a=-m g \sin \theta+(F-k)$ or
$a=g \sin \theta+$
or correct y-intercept (subject must be y-axis)
10 Repeat experiment for each angle θ to find average for a.
Do not allow vague computer methods.

ww.youtube.com/megalecture

line Classes : Megalecture@gmail.com

1 A student is investigating the acceleration of a trolley moving up an inclined plane as shown in Fig. 1.1.

Fig. 1.1
The student is investigating the relationship between the acceleration a of the trolley and the angle θ of the inclined plane when a force F is applied to the trolley.
, 1.8

$$
\text { It is suggested that the relationship is } \quad S . a=20-\left(5(10) \sin 30^{\circ}+1\right)=-0.24
$$

$$
m a=F-(m g \sin \theta+k)
$$

where g is the acceleration of free fall, m is the mass of the trolley and k is a constant.
Design a laboratory experiment to test the relationship between a and θ. Explain how your results could be used to determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to

- the procedure to be followed,
- the measurements to be taken,
- the control of variables,
- the analysis of the data,
- any safety precautions to be taken.

Your

01 Mark scheme

Planning (15 marks)

Defining the problem ($\mathbf{2}$ marks)

P θ is the independent variable and a is the dependent variable, or vary θ and measure a.
P Keep F constant.

Methods of data collection (4 marks)

M Diagram showing inclined plane with labelled support (not if a ruler used as the inclined plane or as vertical support).
M Method to measure angle e.g. use a protractor to measure θ or use a ruler to measure marked distances from which sin θ or θ may be determined. (Allow a labelled protractor in the correct position.)

M Method to measure a time or velocity to determine a, e.g. measure the time using a stopwatch, light gate(s) connected to a timer, motion sensor connected to a time display.
M Use a balance to measure the mass of the trolley.

Method of analysis (3 marks)

A Plot a graph of a or Plot a graph of or Plot a graph of ma against $\sin \theta$. ma against $\sin \theta$ or against $m g \sin \theta$

A Relationship is valid if the graph is a straight line and does not pass through the origin
A $k=F-m \times$ (y-intercept) or $k=F-$ (y-intercept) or $k=F-(y$-intercept)

Diagram

01 Mark scheme

Planning (15 marks)

Defining the problem (2 marks)

P θ is the independent variable and a is the dependent variable, or vary θ and measure a.
P Keep F constant.

Methods of data collection (4 marks)

M Diagram showing inclined plane with labelled support (not if a ruler used as the inclined plane or as vertical support).
M Method to measure angle e.g. use a protractor to measure θ or use a ruler to measure marked distances from which sin θ or θ may be determined. (Allow a labelled protractor in the correct position.)
M Method to measure a time or velocity to determine a, e.g measure the time using a stopwatch, light gate(s) connected to a timer, motion sensor connected to a time display.
M Use a balance to measure the mass of the trolley.

Method of analysis (3 marks)

A Plot a graph of a or Plot a graph of or Plot a graph of ma against $\sin \theta$. ma against $\sin \theta$. against $\mathrm{mg} \sin \theta$

A Relationship is valid if the graph is a straight line and does not pass through the origin

 ...s............. the enngth of plame and 't. can
be measured using a slopwate an . The
chauge in vesocity oves a period of time
$a=v-u / t$. will be acceleration ; a $\quad a=v-u / t$. \qquad
Take few seks of readings for the vaiatuons in accescration of the trolley on increasig or decreasing the angle. O between bench and a prome andone

line Classes : Megalecture@gmail.com

w.youtube.com/megalecture

$$
\begin{aligned}
& \text { Recorel the values of } \theta \text { sing and acceleration } \\
& \text { in the tabk and sketch a graph of } \\
& \text { a }
\end{aligned}
$$

Addiñonal deläls:-

throughsut the experiment
\qquad

Your Mark

Mark scheme

Additional detail (6 marks)

Relevant points might include: [6]
1 Keep mass of trolley constant/use same trolley.
2 Correct trigonometry relationship to determine sin $\begin{aligned} & \text { or } \boxtimes \text { using }\end{aligned}$ marked lengths.
3 Use ruler to measure appropriate distance to determine a, e.g. length of slope, length of card for light gate method, position of motion sensor.
4 Equation to determine a from measurements taken appropriately with a as the subject.
5 Measurement of F for a valid method e.g. take reading from newton-meter or from stretched elastic/spring from extension (allow falling weight e.g. $F=m g$).
6 Use a constant extension to produce a constant force when using stretched spring/elastic.
7 Method to ensure the inclined plane is the same height each side of the plane or spirit level across plane or ensure force F (or string) is parallel to the plane.
8 Safety precaution linked to falling mass/trolley or spring/elastic breaking (not string).
9 Rearrangement of relationship into $y=m x+c$ e.g. $m a=-m g \sin \theta+(F-k)$ or
$a=g \sin \theta+$
or correct y-intercept (subject must be y-axis).

10 Repeat experiment for each angle θ to find average for a.
Do not allow vague computer methods.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

Nambridge Assessment

Interactive Example Candidate Responses
 Paper 5 (May/June 2016), Question 2
 Cambridge International AS \& A Level
 Physics 9702

www.megalecture.com

```
In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of
our resources but also to highlight areas for improvement and to identify new development needs.
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important
to us.
www.surveymonkey.co.uk/r/GL6ZNJB
```

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

line Classes : Megalecture@gmail.com

ww.megalecture.com

2 A student is investigating how the resistance of a wire depends on the diameter of the wire.:

The circuit is set up as shown in:Fig. 2.1.

Fig. 2.1
The resistance R of the wire is measured using an ohmmeter.
The experiment is repeated for wires of the same material and same length L but different diameter d.

It is suggested that R and d are related by the equation

$$
R=\frac{4 \rho L}{\pi d^{2}}
$$

, where ρ is a constant.
(a) A graph is plotted of R on the y-axis against $\frac{1}{d^{2}}$ on the x-axis.

Determine an expression for the gradient.

$$
\begin{aligned}
\therefore R & =\frac{4 p L}{\pi} \cdot \frac{1}{d^{2}} \\
m & =\frac{4 \rho L}{\pi}
\end{aligned}
$$

$$
\begin{equation*}
\text { gradient }=\ldots \frac{4 \rho L}{\pi} \tag{1}
\end{equation*}
$$

.
\square

$$
11
$$

02 Mark scheme
Mark
2(a) \square
2(b) \square

$$
\square-11
$$

(b) Values of d and R are given in Fig.2.2.

$d / 10^{-3} \mathrm{~m}$	R / Ω	$\frac{1}{d^{2}} / 10^{6} \mathrm{~m}^{-2}$
0.91 ± 0.01	1.6	1.21 ± 0.03
0.56 ± 0.01	4.4	3.19 ± 0.1
0.46 ± 0.01	6.6	4.73 ± 0.2
0.38 ± 0.01	9.7	6.93 ± 0.4
0.32 ± 0.01	13.9	9.71 ± 0.6
0.27 ± 0.01	19.5	13.72 ± 1

Fig. 2.2
Calculate and record values of $\frac{1}{d^{2}} / 10^{5} \mathrm{~m}^{-2}$ in Fig. 2.2.
Include the absolute uncertainties in $\frac{1}{d^{2}}$.
(c) (i) Plot a graph of R / Ω against $\frac{1}{d^{2}} / 10^{6} \mathrm{~m}^{-2}$. Include error bars for $\frac{1}{d^{2}}$.
(ii) Draw the straight line of best fit and a worsi acceptable straight line on your graph. Both lines should be clearly labelled.
(iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.
Line of best it
$(4.73,6.6) \quad(13.72,19.5)$
triangle drewn

$$
\frac{19.5-6.6}{(13.72-4.73) \times 10^{9}}=1.43 \times 10^{-6}
$$

worst accepteble strizut line

$$
(1.18,1.6) \quad(14.72,19.5)
$$

$$
\frac{19.5-1.6}{(14.72-1.18) 10^{6}}=1.32 \times 10^{-6}
$$

02 Mark scheme

	Mark	Expected Answer	Additional Guidance
(a)	A1	$\frac{4 \rho \mathrm{~L}}{\pi}$	
(b)	T1	$\frac{1}{d^{2}} / 10^{6} \mathrm{~m}^{-2}$	
	T2	1.2 or 1.21 3.2 or 3.19 4.7 or 4.73	All values to 2 s.f. or 3 s.f. Allow a mixture of significant figures. Must be values in table.

Your Mark

(b)

2(c)(iii) \square
\square
2(d)(ii) \square

$$
(1.43 \pm 0.1)^{10^{-6}}
$$

absolute uncertai'ty: $(1.43-1.32) 10^{-6}$

$$
\text { gradient }=
$$

\qquad

MEGALECTURE

vw.youtube.com/megalecture
 ww.megalecture.com

	02 Mark scheme			
		Mark	Expected Answer	Additional Guidance
2(b)	(c)(ii)	G2	Line of best fit	Lower end of line must pass between (2.6, 4.0) and (3.0, 4.0) and upper end of line must pass between (12.4, 18.0) and (13.0, 18.0).
2(c)(i) 2(c)(ii)		G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.	Line should be clearly labelled or dashed. Examiner judgement on worst acceptable line. Must be steepest/shallowest line. Mark scored only if error bars are plotted.
2(c)(iii)	(c)(iii)	C1	Gradient of line of best fit	The triangle used should be at least half the length of the drawn line. Check the read-offs. Work to half a small square. Do not penalise POT. (Should be about $1.4-1.5 \times 10^{-6}$.)
		U3	Absolute uncertainty in gradient	Method of determining absolute uncertainty: difference in worst gradient and gradient.
2(d)(i)	(d)(i)	C2		Must use gradient value. Do not penalise POT (Should be about $1 \times 10-6$.)
2(d)(ii)		C3	$\Omega \mathrm{m}$	Correct unit and correct power of ten.
	(d)(ii)	U4	Percentage uncertainty in ρ	Percentage uncertainty in gradient + 1\%.
	(e)	C4	R in the range 25.5 to 28.4 and given to 2 or 3 s.f.	Allow 26 or 27 or 28. Allow ECF for POT error in (d)(i) e.g. 2.7×10^{7}.
		U5	Absolute uncertainty in R	Percentage uncertainty must be greater than 8.6\%.

MEGALECTURE

(d) (i) Using your answers to (a) and (c)(iii), determine the value of ρ. Include an appropriate unit.
Data: $L=1.00 \pm 0.01 \mathrm{~m}$.

(ii) Determine the percentage uncertainty in ρ.

$$
\begin{array}{rlrl}
\frac{\Delta \rho}{\rho} & =\frac{\Delta m}{m}+\frac{\Delta L}{L} & \% \text { encortainty } & =0.04 \times 100 \\
& =9 \% \\
\frac{\Delta P}{\rho} & =\frac{0.1 \times 10^{-6}}{1.43 \times 10^{-6}}+\frac{0.01}{1} & &
\end{array}
$$

$$
\frac{\Delta p}{p}=0.09
$$

percentage uncertainty in $\rho=$ \qquad \% [1]
(e) The experiment is repeated with a thinner wire of diameter $0.23 \pm 0.01 \mathrm{~mm}$. The wire is of the same material and length.

Determine the resistance R of the wire. Include the absolute uncertainty in your answer.

$$
R=\frac{4 \rho L}{\pi d^{2}}
$$

$$
R=\frac{4 \times\left(1.13 \times 10^{-6}\right) \times 1}{\pi \times 0.23^{2}}=2.71 \times 10^{-5}
$$

$\frac{\Delta R}{R}=\frac{\Delta \rho}{\rho}+\frac{\Delta L}{L}+2 \frac{\Delta d}{d}$

$$
\begin{aligned}
& =0.09+\frac{0.01}{1}+2\left(\frac{0.01}{0.23}\right) R=(2.71 \pm 0.5) \times 10^{-5} \\
& =0.2
\end{aligned}
$$

Your
Mark

02	Mark scheme		
	Mark	Expected Answer	Additional Guidance
(c)(ii)	G2	Line of best fit	Lower end of line must pass between $(2.6,4.0)$ and (3.0, 4.0) and upper end of line must pass between (12.4, 18.0) and (13.0, 18.0).
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.	Line should be clearly labelled or dashed. Examiner judgement on worst acceptable line. Must be steepest/shallowest line. Mark scored only if error bars are plotted.
(c)(iii)	C1	Gradient of line of best fit	The triangle used should be at least half the length of the drawn line. Check the read-offs. Work to half a small square. Do not penalise POT. (Should be about $1.4-1.5 \times 10^{-6}$.)
	U3	Absolute uncertainty in gradient	Method of determining absolute uncertainty: difference in worst gradient and gradient.
(d) (i)	C2		Must use gradient value. Do not penalise POT (Should be about $1 \times 10-6$.)
	C3	$\Omega \mathrm{m}$	Correct unit and correct power of ten.
(d)(ii)	U4	Percentage uncertainty in ρ	Percentage uncertainty in gradient + 1\%.
(e)	C4	R in the range 25.5 to 28.4 and given to 2 or 3 s.f.	Allow 26 or 27 or 28. Allow ECF for POT error in (d)(i) e.g. 2.7×10^{7}.
	U5	Absolute uncertainty in R	Percentage uncertainty must be greater than 8.6\%.

2 A student is investigating how the resistance of a wire depends on the clameter of the wire. The circuit is set up as shown in Fig. 2.1.

Fig. 2.1
The resistance R of the wire is measured using an ohmmeter.
The experiment is repeated for wires of the same material and same length L but different diameter d.
It is suggested that (R)and (d)are related by the equation

$$
R=\frac{4 \rho L}{\pi d^{2}}
$$

where ρ is a conștant.
(a) A graph is plotted of A on the y-axis agains $\left[\frac{1}{d^{2}}\right.$ on the x-axis. Determine an expression for the gradient.

$$
\begin{aligned}
& R=\frac{4 \rho L}{\pi d^{2}} \\
& R=\left(\frac{k \rho L}{\pi}\right) \frac{1}{\delta^{2}}
\end{aligned}
$$

$$
\text { gradient }=\ldots \ldots
$$

Your
Mark

$$
\begin{aligned}
& \text { 2(a) } \square \\
& \text { 2(b) } \square
\end{aligned}
$$

02	Mark scheme		Additional Guidance
	Mark	Expected Answer	
(a)	A1	$\frac{4 \rho \mathrm{~L}}{\pi}$	
(b)	T1	$\frac{1}{d^{2}} / 10^{6} \mathrm{~m}^{-2}$	
	T2	1.2 or 1.21	All values to 2 s.f. or 3 s.f. Allow a mixture of significant figures. Must be values in table.
		3.2 or 3.19	
		4.7 or 4.73	
		6.9 or 6.93	
		9.8 or 9.77	
		14 or 13.7	
	U1	From ± 0.03 to ± 1	Allow more than one significant figure. Allow zero for first uncertainty and up to 1.2 for largest uncertainty.
(c) (i)	G1	Six points plotted correctly	Must be within half a small square. Do not allow "blobs". ECF allowed from table.
	U2	Error bars in $\frac{1}{d^{2}}$ plotted correctly	All error bars to be plotted. Length of bar must be accurate to less than half a small square and symmetrical.

ww.youtube.com/megalecture

line Classes : Megalecture@gmail.com

www.megalecture.com

(b) Values of d and R are given in Fig. 2.2

Fig. 2.2
Caiculate and record values of $\frac{1}{d^{2}} / 10^{6} \dot{m}^{-2}$ in Fig. 2.2.
Include the absolute uncertainties in $\frac{1}{d^{2}}$.
(c) (i) Plot a graph of R / Ω against $\frac{1}{d^{2}} / 10^{5} \mathrm{~m}^{-2} \because$, Include error bars for $\frac{1}{d^{2}}$.
(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled.
(iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.
Grudend of the worst int:

Grationt of best ift $=\frac{19-5}{(33.4-3.6) \times 10^{6}}$

$$
=\frac{18.6-2}{(14-1.4) \times 10^{6}}
$$

$$
\begin{aligned}
& =\frac{1 k}{9.8 \times 10^{6}} \\
& =1.43 \times 10^{-6} \Omega^{-2}
\end{aligned}
$$

$$
=\frac{16.6}{1.26 \times 10^{7}}
$$

$$
=1.32 \times 10^{-6} \Omega \mathrm{~m}^{-2}
$$

Absilute unertants $=(1.43-1.32) \times 10^{-6}$

$$
=0.11 \times 10^{-6}
$$

Your Mark
2(a) \square
2(b) \square

Q2	Mark scheme		
	Mark	Expected Answer	Additional Guidance
(a)	A1	$\frac{4 \rho L}{\pi}$	

vw.youtube.com/megalecture

www.megalecture.com

2(a)	02 Mark scheme			
		Mark	Expected Answer	Additional Guidance
2(b)	(c)(ii)	G2	Line of best fit	Lower end of line must pass between (2.6, 4.0) and (3.0, 4.0) and upper end of line must pass between (12.4, 18.0) and (13.0, 18.0).
		G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.	Line should be clearly labelled or dashed. Examiner judgement on worst acceptable line. Must be steepest/shallowest line. Mark scored only if error bars are plotted.
2(c)(ii) 2(c)(iii)	(c)(iii)	C1	Gradient of line of best fit	The triangle used should be at least half the length of the drawn line. Check the read-offs. Work to half a small square. Do not penalise POT. (Should be about $1.4-1.5 \times 10^{-6}$.)
2(d)(i)		U3	Absolute uncertainty in gradient	Method of determining absolute uncertainty: difference in worst gradient and gradient.
2(d)(ii)	(d)(i)	C2		Must use gradient value. Do not penalise POT (Should be about $1 \times 10-6$.)
2(e)		C3	$\Omega \mathrm{m}$	Correct unit and correct power of ten.
	(d)(ii)	U4	Percentage uncertainty in ρ	Percentage uncertainty in gradient + 1%.
	(e)	C4	R in the range 25.5 to 28.4 and given to 2 or 3 s.f.	Allow 26 or 27 or 28. Allow ECF for POT error in (d)(i) e.g. 2.7×10^{7}.
		U5	Absolute uncertainty in R	Percentage uncertainty must be greater than 8.6\%.

MEGALECTURE

(d) (i) Using your answers to (a) and (c)(iii), determino the value of ρ. Include an appropriate unit.

Data: $L=1.00 \pm 0.01 \mathrm{~m}$.
Gimdient $=\frac{4 g L}{\pi}$

$$
\rho=\frac{\left(143 \times N^{-6}\right)(\pi)}{4}
$$

$$
\begin{aligned}
& \frac{4 p L}{\pi}=1.43 \times 10^{-6} \\
& \frac{\rho(6)(1)}{r}=1.43 \times 10^{-6}
\end{aligned}
$$

$=1.12 \times 10^{-6}$
\qquad
(ii) Determine the percentage uncertainty in ρ.

$$
\begin{aligned}
\frac{\Delta P}{P} & =\frac{D G}{G}+\frac{D L}{L} \\
& =\frac{q_{0}}{}=\frac{D \rho}{\rho} \times 100 \\
& =0.087 \times 100 \\
& =8.43 \times 10^{-6}+\frac{0.01}{1.00} \\
& =0.087 \\
&
\end{aligned}
$$

(e) The experiment is rẹpeated with a thinner wire of diameter $0.23 \pm 0.01 \mathrm{~mm}$. The wire is of the same material and length.

Determine the resistance R of the wire: Include the absolute uncertainty in your answer.

$$
\begin{array}{rlrl}
R & =\left(\frac{4 \rho^{L}}{\pi}\right) \frac{1}{d^{2}} & R & =\left(G_{w}\right) \frac{1}{d^{2}} \\
R & =\left(G_{B} \frac{1}{d^{2}}\right. & & =\left(1.32 \times 10^{-6}\right)\left(\frac{1}{\left(0.23 \times 10^{-3}\right)^{2}}\right) \\
& =\left(1.43 \times 10^{-6}\right)\left(\frac{1}{\left(0.23^{2} \times 10^{-7}\right)^{2}}\right) & \text { Alsilute cencertant } & =27.03 .24 .95 \\
& =2.08 \\
& =27.03 &
\end{array}
$$

$$
R=\ldots . ~ \Omega[2] ~
$$

2 A student is investigating how the resistance of a wire depends on the diameter of the wire.
The circuit is set up as shown in Fig. 2.1.

Fig. 2.1
The resistance R of the wire is measured using an ohmmeter.
The experiment is repeated for wires of the same material and same length L but different diameter d.

It is suggested that R and d are related by the equation

$$
R=\frac{4 \rho L}{\pi d^{2}}
$$

where ρ is a constant.
(a) A graph is plotted of R on the y-axis against $\frac{1}{d^{2}}$ on the x-axis.

Determine an expression for the gradient.

$$
\begin{aligned}
& R=\frac{A P C}{\pi d^{2}} \quad \begin{array}{l}
y=m x+C
\end{array} \\
& y=m x+c \\
& R=\frac{4 D L}{\pi} \frac{1}{d z}
\end{aligned}
$$

line Classes : Megalecture@gmail.com

ww.youtube.com/megalecture

ww.megalecture.com

(b) Values of d and R are given in Fig.2.2.
(c) (i) Plot a graph of R / Ω against $\frac{1}{d^{2}} / 10^{6} \mathrm{~m}^{-2}$.

Include error bars for $\frac{1}{d^{2}}$. answer.

$$
\begin{aligned}
& \text { Dest Fil } \text { ri }_{i} \text {. } \\
& \frac{y^{2}-y^{\prime}}{x^{2}-x^{1}}=\frac{19-4}{(13 \cdot 4-3.6) \times 10^{6}}=\frac{15}{9.4 \times 10^{6}} \quad \frac{y^{2}-y^{\prime}}{x^{2}-21}=\frac{19-5}{(12.4-4.2) \times 10^{6}}=\frac{14}{8 \cdot 2 \times 16} \\
& \text { y }=1.60 \times 10^{-6} \\
& =1.60-1.7 \\
& =1 \times 10^{-7} \\
& =1.7 \times 10^{-6}
\end{aligned}
$$

$d / 10^{-3} \mathrm{~m}$	R / Ω	$\frac{1}{2^{2}} / 10^{6} \cdot 2$
0.91 ± 0.01	1.6	$1.2 .1 \pm 0.02$
0.56 ± 0.01	4.4	3.18 ± 0.11
0.46 ± 0.01	6.6	$4.73 \pm .0 .29$
0.38 ± 0.01	9.7	$6.93 \pm \% 0.316$
0.32 ± 0.01	13.9	$9.77 \pm .0 .61$
0.27 ± 0.01	19.5	$13.72 \pm .1 .02$

Fig. 2.2

Calculate and record values of $\frac{1}{d^{2}} / 10^{6} \mathrm{~m}^{-2}$ in Fig. 2.2.
Include the absolute uncertainties in $\frac{1}{d^{2}}$.
(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be cleariy labelled.
(iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your
2(d)(i) \square

2(e)
\square
2(d) (ii) \square

c)(i) \square
2(c)(ii) \square

2(c)(iii) \square

02	Mark scheme		
	Mark	Expected Answer	Additional Guidance
(a)	A1	$\frac{4 \rho \mathrm{~L}}{\pi}$	
(b)	T1	$\frac{1}{d^{2}} / 10^{6} \mathrm{~m}^{-2}$	
	T2	1.2 or 1.21 3.2 or 3.19 4.7 or 4.73 6.9 or 6.93 9.8 or 9.77 14 or 13.7	All values to 2 s.f. or 3 s.f. Allow a mixture of significant figures. Must be values in table.
	U1	From ± 0.03 to ± 1	Allow more than one significant figure. Allow zero for first uncertainty and up to 1.2 for largest uncertainty.
(c)(i)	G1	Six points plotted correctly	Must be within half a small square. Do not allow "blobs". ECF allowed from table.
	U2	Error bars in $\frac{1}{d^{2}}$ plotted correctly	All error bars to be plotted. Length of bar must be accurate to less than half a small square and symmetrical.

w.youtube.com/megalecture

line Classes : Megalecture@gmail.com

w.youtube.com/megalecture

ww.megalecture.com

(d) (i) Using your answers to (a) and (c)(iii), determine the value of ρ. Include an appropriate unit.

Data: $L=1.00 \pm 0.01 \mathrm{~m}$.

$$
\begin{aligned}
R & =\frac{4 \rho l}{\pi d^{2}} \\
g & =\frac{4 P}{T} \\
\left(1.6 \times 10^{-6}\right) & =\frac{4 p}{\pi} \\
5.03 \times 10^{-6} & =4 P
\end{aligned}
$$

$$
P=\frac{5.03 \times 10^{-6}}{1}
$$

$$
P=1.25 \times 10^{-6}
$$

$$
\begin{equation*}
\rho=\ldots .2 .6 \times 10^{-6} \tag{2}
\end{equation*}
$$

(ii) Determine the percentage uncertainty in ρ.

$$
\begin{aligned}
& \frac{\Delta L}{L}=\frac{2 \Delta L}{L} \\
& \frac{\Delta L}{1.2 .6 \times 100^{-6}}=\frac{0.025}{1.28} \times 1.0 .00 \\
& 0.025 \times 10^{-6}
\end{aligned}
$$

$$
\text { percentage uncertainty in } \rho=\ldots \text {.............. }
$$

- (e) The experiment is repeated with a thinner wire of diameter $0.23 \pm 0.01 \mathrm{~mm}$. The wire is of the same material and length.

Determine the resistance R of the wire. Include the absolute uncertainty in your answer.

$$
\begin{align*}
R & =\frac{4 P L}{\Lambda d^{2}} \\
& \approx \frac{4\left(1.26 \times 10^{-6}\right)(1.00)}{\pi 0.23} \\
& =\frac{5.04 \times 10^{-6}}{\pi 0.23} \\
& \approx 6.47 \times 10^{-6}
\end{align*}
$$

$$
\frac{\Delta l}{L}=\frac{2 \Delta L}{L}
$$

$$
\frac{\Delta L}{6.97 \times 10^{-6}}=\frac{2 \times 0.01}{1.00}
$$

$$
=1.39 \times 10^{-7}
$$

$$
R=(6.97+0.1) \times 10^{-6}
$$

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

 www.megalecture.comCambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +441223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES March 2018

MEGALECTURE

