Interactive Example Candidate Responses
 Paper 2 (May/June 2016), Question 1
 Cambridge International AS \& A Level
 Biology 9700

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

2

Answer all the questions.
1 Statements \mathbf{A} to \mathbf{E} are about the structure and functioning of enzymes.
State the corroct term to match each of the statements \mathbf{A} to \mathbf{E}.
A The energy level, lowered by enzyme action, that needs to be overcome by reactants in order for products to bo formed.
......Actiuation....Energy
B. The mechanism of enzyme action that relies on the active site being partially flexlble and changing shape in order to bind the substrate.
..........noduxed....nit....mechanism
C 'The term to describe a protein, such as an enzyme, with a tertiary or quaternary structure that results in an approximately spherical shape.
......alabular. \qquad
D The term for enzymes that function outside cells.

......Extracellular

E The concentration of substrate that enables an enzyme to achieve half the maximum rate of reaction.
.......K.ra......value

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com 2

Answer all the questions

1 Statements A to E are about the structure and functioning of enzymes,
State the correct term to match each of the statements \mathbf{A} to \mathbf{E}.
A The energy level, lowered by enzyme action, that needts to be overcome by reactants in order for products. to be formed:
Activatron Energy.
B The mechanism of enzyme action that relies on the active site being peartially flexible and changing shape in order to bind the substrate. Induce fo meohansm. \qquad
C. The term to describe a protein, such as an enzyme, with a tertiary or quaternary structure that results in an approximately spherical shape.

Galpowlar
The term for enzymes that function outside cells.
\qquad extrmste protenecgtosit
(E) The concentration of substrate that enables an enze (oachieve halt the maximum rate of
\qquad $<$ reaction.

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

2

Answer all the questions.
1 Statements A to E are about the structure and functioning of enzymes.
State the correct term to match each of the statements \mathbf{A} to \mathbf{E}.
A The energy level, lowered by enzyme action, that needs to be overcome by reactants in.order for products to be formed.
.Ea...C.anfindon....energy,
B The mechanism of enzyme action that relies on the active site being partially flexible and changing shape in order to bind the substrate.
..Indued.........jit. \qquad

C The term to describe a protein, such as an enzyme, with a tertiary or quaternary structure that results in an approximately spherical shape.
..henogoghoin \qquad
D The term for enzymes that function outside cells.
...Acite Active site \qquad

E The concentration of substrate that enables an enzyme to achieve balf the maximum rate of reaction.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 2 (May/June 2016), Question 3 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

2 Marram grass, Ammophila arenaria, is an important plant of sand dunes. Leaves of marram grass are well adapted to reduce water loss by transpiration

Fig. 2.1 is a photomicrograph of a section though the leaf of marram grass.

Fig. 2.1
(a) Examples of adaptations to reduce water loss by transpiration include a thick cuticle and no stomata on the outer surface, and stomata in pits on the inner surface.
(i) State one other adaptation, visible in Fig. 2.1, which reduces water loss by transpiration. ...Hairs on...innex....surbucot.
(ii) Explain how this adaptation reduces water loss.
.Water ..vapour...leaving...stomata is .trapped ...ly ...these hairs...
 of(...swater. potential gradient..is...reducact....and. rate. dfs.............
 is reseduced \qquad
(b) State the term used to describe a plant type that has adaptations to reduce water loss by transpiration.
...Xeraphyte

	02	Mark scheme
	(a)(i)	curled / rolled, leaf ; R curly / curved / folded or trichomes / hairs ; A hair / hairy,-like structures R cilia / spines / needles
(a)(ii) (b)	(a) (ii)	allow explanations for stomata in pits, thick cuticle and no stomata on outer surface as ecf from (i) curled leaf / trichomes / stomata in pits ref. to (creates) still / non-moving, air ; (in enclosed area) humid / moist ; AW, e.g. traps water vapour / maintains humidity water potential gradient less steep or decreased rate of diffusion of water vapour (out) ; A (water) vapour pressure gradient for water potential gradient I decreased concentration gradient of water vapour assume in context of between substomatal air space and enclosed area unless stated otherwise thick cuticle greater layer impermeable wax / AW ; A thicker waterproof layer increases distance for diffusion ; of water vapour ; no stomata on outer surface most water lost via (open) stomata ; cuticular transpiration only ; ref. to where most exposure to, light / air currents / wind ; [max 2]
	((b)	xerophytic / xerophyte ; $\begin{array}{r}\text { [1] } \\ \text { [Total: 4] }\end{array}$

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

2 Marram grass, Ammophila aronaria, is an important plant of sand dunes. Leaves of marram grass are well adapted to reduce water loss by transpiration.

Fig. 2.1 is a photomicrograph of a section though the leaf of marram grass.

Fig. 2.1
(a) Examples of adaptations to reduce water loss by transpiration include a thick cuticle and no stomata on the outer surface, and stomata in pits on the inner surface.
(i) State one other adaptation, visible in Fig. 2.1, which reduces water loss by transpiration. Hoir like swuchuren

Explain how this adaptation reduces water loss.
 transpiration
Xerophyie:

Your
 (a)(i)

02	Mark scheme
(a) (i)	curled / rolled, leaf ; R curly / curved / folded or trichomes / hairs ; A hair / hairy,-like structures R cilia / spines / needles
(a)(ii)	allow explanations for stomata in pits, thick cuticle and no stomata on outer surface as ecf from (i) curled leaf / trichomes / stomata in pits ref. to (creates) still / non-moving, air ; (in enclosed area) humid / moist ; AW, e.g. traps water vapour / maintains humidity water potential gradient less steep or decreased rate of diffusion of water vapour (out) ; A (water) vapour pressure gradient for water potential gradient I decreased concentration gradient of water vapour assume in context of between substomatal air space and enclosed area unless stated otherwise thick cuticle greater layer impermeable wax / AW ; A thicker waterproof layer increases distance for diffusion ; of water vapour ; no stomata on outer surface most water lost via (open) stomata ; cuticular transpiration only ; ref. to where most exposure to, light / air currents / wind ; [max 2]
(b)	xerophytic / xerophyte ; [1] \quad [Total: 4]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

2. Marram grass, Ammophila. arenaria, is an important plant of sand dunes. Leaves of marram grass are well adapted to reduce water loss by transpiration.

Fig. 2.1 is a photomicrograph of a section though the leaf of marram grass.

Fig. 2.1
(a) Examples of adaptations to reduce water loss by transpiration include a thick cuticle and no stomata on the outer surface, ahid stomata in pits on the inner surface.
(i) State one other adaptation, visible in Fig. 2.1, which reduces water loss by transpiration. Waxy Cuticle
(ii) Explain how this adaptation reduces water loss.
The layer of wax on the: cuticle is
impermeable to water hence it acts
as a barrier that does act allow. wa.:
-her' to pass through. This' reduce. the
amount of water that has been
lost by the enzyme.
(b) State the term used to describe a plant typẹ that has adaptations to reduce water loss by . trantspiration.
. Xerophyte

Your
(a)(i)

02	Mark scheme
(a)(i)	curled / rolled, leaf ; R curly / curved / folded or trichomes / hairs ; A hair / hairy,-like structures R cilia / spines / needles
(a)(ii)	allow explanations for stomata in pits, thick cuticle and no stomata on outer surface as ecf from (i) curled leaf / trichomes / stomata in pits ref. to (creates) still / non-moving, air ; (in enclosed area) humid / moist ; AW, e.g. traps water vapour / maintains humidity water potential gradient less steep or decreased rate of diffusion of water vapour (out) ; A (water) vapour pressure gradient for water potential gradient I decreased concentration gradient of water vapour assume in context of between substomatal air space and enclosed area unless stated otherwise thick cuticle greater layer impermeable wax / AW ; A thicker waterproof layer increases distance for diffusion ; of water vapour ; no stomata on outer surface most water lost via (open) stomata ; cuticular transpiration only ; ref. to where most exposure to, light / air currents / wind ; [max 2]
(b)	xerophytic / xerophyte ; $\begin{array}{r}\text { [1] } \\ \text { [Total: 4] }\end{array}$

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 2 (May/June 2016), Question 3 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

3 Globally, measles is an important disease that mainly affects children. Many deaths from measles occur in children under five years of age.

Table 3.1 shows the population of six countries in Africa in 2009 and the number of cases of measles per 100000 people for the four years 2009 to 2012.
All six countries are classified as low-income countries.
Table 3.1

country		population in 2009	number of cases per 100000 people				
		2010	2011	2012			
Centras African Republic	4266000		0.26	0.05	15.31	3.12	
Chad	11371000	1.45	1.66	71.60	0.96		
Eritrea	5558000	1.48	82	0.89	0.81		
Ethiopia	84838000	1.39	4.86	3.64	4.74		
Gambia	1628000	0.00	0.12	0.00	0.00		
Niger	15303000	5.23	2.34	4.67	1.59		

(a) (i) The actual number of cases of measles in Chad in 2009 was 165 and in Eritrea was 82. Calculate the actual number of cases of measles in.Ethiopia in 2009. Show your working.

$$
\begin{aligned}
\text { nomber of cases } & =\frac{1.39}{100000} \times 84838000 \\
& \approx 1179
\end{aligned}
$$

(ii) Use the data for Chad, Eritrea and Ethopia to explain the advantages of showing the data in Table 3.1 as number of cases of measles per 100000 people rather than the actual number of cases.

- Different contrie have different popultion
- Showng data as nomber of cases of measbes per 100000 peple gives a propectan or fradau of the contiry that is mfected with meacles
- Gay , Gung total nomber of cases is Mesleading due to different ppplator sizes.
- for ustance, Ethicpa has 1179 cases while Exitire arfy

3(a)(i)

3(a)(ii) \square
\square

Mark Comment

2/2 The correct calculated value is given and the working is also shown clearly.

3/3 The idea of taking population size into account is implied by the statement that different countries have different population sizes. The candidate has supported this clearly with their calculated data from (a) (i) and some data extracted from Table 3.1. The values have been correctly transferred to their response.

3(b)
4/4 The candidate has set out their response clearly, starting with a sentence that supports the statement. They then include information about Niger as an example. A trend is made clear and this is supported with correct data taken from the graph and the table.
The sentences about Gambia are strong pieces of evidence to support the statement - these are expressed well by the candidate. Again, correct data is given in support.
The candidate makes it clear here that they are switching to provide evidence that does not support the statement.

2/2 This is a very good description of the vaccine used in the successful campaign to eradicate smallpox.
A very thorough answer displaying good understanding.
\square 1/1
3(d)

3(e) \square

Examiner marks and comments

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Fig. 3.1 shows the percentage of children vaccinated against measles over a ten year period from 2003 to 2012.

- The percentage vaccinated represents children under one year of age who have been given at least one dose of the vaccine against measles in the given year.
- The data are for the six African countries shown in Table 3.1

	Examiner marks and comments	
	Mark $2 / 2$	Comment The correct calculated value is given and the working is also shown clearly.
3(a)(ii)	$3 / 3$	The idea of taking population size into account is implied by the statement that different countries have different population sizes. The candidate has supported this clearly with their calculated data from (a) (i) and some data extracted from Table 3.1. The values have been correctly transferred to their response.
3(b)	4/4	The candidate has set out their response clearly, starting with a sentence that supports the statement. They then include information about Niger as an example. A trend is made clear and this is supported with correct data taken from the graph and the table. The sentences about Gambia are strong pieces of evidence to support the statement - these are expressed well by the candidate. Again, correct data is given in support. The candidate makes it clear here that they are switching to provide evidence that does not support the statement.
3(c)	$2 / 2$	This is a very good description of the vaccine used in the successful campaign to eradicate smallpox. A very thorough answer displaying good understanding.
3(d)	1/1	
3(e)	$2 / 2$	There are actually two acceptable examples in this second answer; the cost of manufacturing viruses would have been enough to earn the mark.

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Vaccination is known to protect populations against infectious diseases.

Some of the data in Table 3.1 (on page 4) and Fig. 3.1 (on page 6) support this statement.
Describe the data that support this statement and comment on the data that do not support this statement.
 $.56 \%$. 49% by 2011 .and steyed ast this... lexet until. 2012. \qquad

 IDus...06.0.96 at..2012. Sa as vaccinction.\% fell. incictane increased..... thowever, Central African..Republican....shours.a.skeep.increase.in.\%...

 thevixus mutaled. farming. a different strain. ia. this.couniny renderng this

(c) The successful eradication of smallpox involved an intensive global vaccination programme. It is hoped that the same can be achieved with measles.

Outiine two features, apart from cost, of the smallpox eradication programme that may have made it easier to eradicate than measles.
 adaptive antigenic .shift or. drfft.occurring. sa. not .change in vaccine required. ..Awareness... of .this...th. disease.. was, high.in..both ..rich and poar. notions. .Sa.supply....of....volunieers,... was..always high in each region. Symproms svere alsa dorious .and .specific. sa ...tracing. ofs .infected and contect.. with uninfrected was easier. ...[2]
(d) State precisely the type of immunity gained by receiving a measles vaccine.
...Artificial...Active ... Immunity. .[1]

3(a)(i)

3(a)(ii)

3(b) \square

3(c)

3(d)

3(e) \square

2/2 This is a very good description of the vaccine used in the successful campaign to eradicate smallpox.
A very thorough answer displaying good understanding.
Examiner marks and comments

Mark Comment

2/2 The correct calculated value is given and the working is also shown clearly.

3/3 The idea of taking population size into account is implied by the statement that different countries have different population sizes. The candidate has supported this clearly with their calculated data from (a) (i) and some data extracted from Table 3.1. The values have been correctly transferred to their response.

4/4 The candidate has set out their response clearly, starting with a sentence that supports the statement. They then include information about Niger as an example. A trend is made clear and this is supported with correct data taken from the graph and the table.
The sentences about Gambia are strong pieces of evidence to support the statement - these are expressed well by the candidate. Again, correct data is given in support.
The candidate makes it clear here that they are switching to provide evidence that does not support the statement.

1/1

2/2 There are actually two acceptable examples in this second answer; the cost of manufacturing viruses would have been enough to earn the mark.

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(e) Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered.
State two examples of these costs.

4 Fig. 4. 1^{\prime} is a simplified diagram of the circulatory system of a mammal. Some of the lymph system is also shown.

Fig. 4.1

www.youtube.com/megalecture

www.megalecture.com

3 Globally, measles is an important disease that mainly affects children. Many deaths from measles occur in children under five years of age.

Table 3.1 shows the population of slx countries in Africa in 2009 and the number of cases of measles per 100000 people for the four years 2009 to 2012.
All six countries are classified as low-income countries.
Table 3.1

country		population in 	2009	number of cases per 100000 people				
		2011	2012					
Central African Republic	4266000		0.26	0.05	15.31	3.12		
Chad	11371000	1.45	1.66	71.60	0.96			
Eritrea	5558000	1.48	0.89	0.81	3.16			
Ethiopia	84838000	1.39	4.86	3.64	4.74			
Gambia	1628000	0.00	0.12	0.00	0.00			
Niger	15303000	5.23	2.34	4.67	1.59			

(a) (i) The actual number of cases of measles in Chad in 2009 was 165 and in Eritrea was 82 . Calculate the actual number of cases of measles in Ethiopia in 2009. Show your working.

$$
\begin{aligned}
\frac{84838000}{100,000} & =848.38 \\
848.38 \times 1.39 & =1179.25 \\
& \approx 1179 \text { casen. }
\end{aligned}
$$

(ii) Use the data for Chad, Eritrea and Ethopia to explain the advantages of showing the data in Table 3.1 as number of cases of measles per 100000 people rather than the actual number of cases.
If actiral number wan shown, it would be difficul To plot a graph or undersiand the resuls. ic maybe difficule to record resuls among such large. numbers of people e.g. in Qsad, popmation is 8483800 and resulis cannot be recorded easily. If there is largepopulaion, some pepple may not repore -their caresof.....mpanlen which maken the doic inaccurafe. In chad,Poproation is 11371000 and in Erirrea, 5558000 ,

Your Mark

3(a)(i)

3(b)

3(a)(ii)

03 Mark scheme

 if calculation correct but answer incorrect e.g. 1.39×848.38 or $1.39 \times(84838000 / 100000)$ or if no calculation to check but answer given as 1180 [2] [2]
(a)(ii) 1 provides information about / AW, proportion / percentage, (of population) affected / AW :

2 to, make (valid) comparisons / compare ; between countries / in one country over time

3 provides information about severity of disease ; AW
4 population size, taken into account / different for different countries / changes over time in a country ; do not need 'size' if 'use of 'population' is in correct context
5 idea that countries with larger populations will usually have more cases / higher number of cases may just mean larger population of country;

6 AVP ; gives guidance about whether the disease is, spreading / becoming an epidemic / dying out (in one country) in context of over time idea that number of cases per 100000 are, standardised / normalised, values
7 use of data to support ; only two of Chad, Eritrea or Ethiopia where comparisons between countries stated I ref. to other countries
(2009) actual cases and standardised cases
comparison (2009) to support mp 5 population size and actual cases
stated values of similar number of cases per 100000 and populations of different sizes
countries compared, number of cases per 100000 for any stated year, with comment about severity
number of cases per 100000 for one country over time, withcomment about severity / spreading / dying out / control / AW

MEGALECTURE

Online Classes : Megalecture@gmail.com
 www.youtube.com/megalecture

Fig. 3.1 shows the percentage of children vaccinated against measles over a ten year period from 2003 to 2012.

- The percentage vaccinated represents children under one year of age who have been given at least one dose of the vaccine against measles in the given year.
- The data are for the six African countries shown in Table 3.1

Fig. 3.1

Your Mark

3(a)(i)

(a)(ii)

3(b) \square
\square

3(d)

\square
can give values of percentage vaccinated to describe increasing / decreasing percentage vaccination
support
1 Gambia high percentage vaccinated (throughout) and low number of cases ;
A Eritrea
2 data to support ; e.g. a percentage vaccination for a year and number of cases (same, or following, year after vaccination) or range given for percentage vaccinations over the whole, or stated number of years or a compilation of the two
partial / weak, support
3 Central African Republic decreasing vaccination and number of cases in 2011, higher / 15.31
4 Chad (from 2008) increasing percentage vaccination and, low / stated, number of cases
2009 / 2010 / 2012 ,
1.451 .660 .96
do not support
5 Niger / Ethiopia / Chad, (generally) increasing percentage vaccinated and
number of cases, fluctuates / increase and decrease (ora) / AW ,
A stated correct data to show increase and decrease
A for Chad if mp 4 given and ref. to increase / 71.6 in 2011
6 (generally) increasing percentage vaccinated and number of cases, increases / goes from 2.34-4.67, in 2011 in Niger or
increases / goes from 1.39-4.86, in 2010 in Ethiopia or increases / goes from 1.66-71.6, in 2011 in Chad A 1.45-1.66 in 2010
7 Central African Republic decreasing vaccination and low number of cases in, 2009 / 2010 / 2012 :

8 / 9 AVP ;; e.g.

- idea that most values for number of cases are low irrespective of vaccination percentage
- ref.to needs, high / 90\%, vaccination to be effective A < 80\% / low, vaccination ineffective
- idea that generally Gambia / Eritrea, have higher percentage vaccinated and have lower number of cases than, (three of) Ethiopia, Chad, Central African Republic, Niger / the other countries

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select

www.megalecture.com

(b) Vaccination is known to protect populations against infectious diseases.

Some of the data in Table 3.1 (on page 4) and Fig. 3.1 (on page 6) support this statement.
Describe the data that support this statement and comment on the data that do not support this statement.

100,000 seppre are reconded. On the other hand, in Gambial.				
in $2011,91 \%$ and in 2012 , 95% were vaccinated.				
and theve were no sanen reporced there				
exeep very few (0.17 enmong 100,000) in 2010				
So heve thin storenent is sumporied.				

(c) The successful eradication of smallpox involved an intensive global vaccination programme. It is hoped that the same can be achieved with measles.

Outline two features, apart from cost, of the smallpox eradication programme that may have made it easier to eradicate than measles.
\rightarrow The moser variola virus was scabie and
\qquad
\rightarrow vacine produced wan hermoscable and couldbe
\rightarrow vaccine profuced wan thermoscable and could be
 as in the Iropion)
(d) State precisely the type of immunity gained by recelving a measles vaccine.
\qquad .[1]

3(a)(ii)

3(b)

03 Mark scheme

cont.

- ref. to Chad / Central African Republic, in 2011 and, epidemics / inability to keep number of cases down / ineffectiveness of vaccination programme I ref. to 71.6 (Chad) or 15.31 (Central African Republic)
- Eritrea 2012 high vaccination but, increase in / 3.16, cases
- ref. to increasing percentage of vaccination in Niger and decrease in cases, 2009-2010 from 5.23 to 2.34 / 2011-2012 from 4.67-1.59 A 2009-2012 from 5.23 to 1.59 max 4]
points refer to smallpox, look for points written as ora any two from
1 high, percentage / proportion, immunised / vaccinated ; AW A mass vaccination
2 no boosters required / one dose enough / immunity very long-lived; A idea of long-lasting effect of vaccine
3 same, vaccine / antigens, used (throughout) ; treat as neutral ref. to, low mutation rate / stability, of smallpox virus
4 heat stable / thermostable / freeze-dried / lyophilised, vaccine ; I frozen
A no need to refrigerate / AW
A idea of longer shelf-life
5 ease of, administering vaccine / training people to give vaccine ;
6 ring vaccination / described, e.g. contact tracing ;
7 easy to identify infected people / AW, (to begin ring vaccination) ;
8 lower percentage cover required for smallpox than measles / lower herd
immunity required;
9 AVP ; smallpox less infectious (so lower percentage cover required) idea of less, civil unrest / war / movement of populations (so easier to implement)
suggestion that smallpox live vaccine (and measles not live)
[max 2]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(e) Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered.

State two examples of these costs.

 road eic have noc been buit and casen of
\qquad mearlen are mign \qquad in anmber.

2 cost of moviding equcaional facilities 10 people in remote aneas to educate then of the imporiancecinated ...[2]
4. Fig. 4.1 is a simplified ciagram of the circulatory system of a mammal. Some of the lymph system is also shown.

Fig. 4.1

www.youtube.com/megalecture

www.megalecture.com

3 Giobally, measles is an important disease that mainly affects children. Many deaths from measles occur in children under five years of age.

Table 3.1 shows the population of six countries in Africa in 2009 and the number of cases of measles per 100000 people for the four years 2009 to 2012.
All six countries are classified as low-income countries.

country	population in2009	number of cases per 100000 people			
		2009	2010	2011	2012
Central African Republic	- 4266000	0.26	0.05	15.31	3.12
Chad *	11371000	1.45 k 65	1.66	71.60	0.96
Eritrea *	5558000	1.4882	0.89	0.81	3.16
Ethiopia *	84838000	1.3989	4.86	3.64	4.74
Gambla	1628000	0.00	0.12	0.00	0.00
Niger	15303000	5.23	2.34	4.67	1.59

(a) (i) The actual number of cases of measles in Chad in 2009 was 165 and in Eritrea was. 82. Calculate the actual number of cases of measles in Ethiopia in 2009 Show your working.
Chad: 165 $\times 11371000$
1876 6 ars67
. . \because

$$
\text { nopia }=1.2 a
$$

Ethropia $\times .84838000$

100000 $\therefore \quad \therefore$
$=1179.2$.
$\therefore=711790$
(ii) 'Us'e' the data for Chad, Eritrea and Ethopia-to explain: the-adyantages of showing the data in Table 3.1 as number of cases of measles per 100000 people rather than the
 The number of population is -too btg if wing \qquad actual number. The may caure prondrestems. If is earree to un coses per 100000 or all of the country has oure 1 millison populatign.

Ctsing smaprifed into fur decinol
If stmple to use
\qquad

$$
0
$$

Your Mark

3(a)(i)

Q3 Mark scheme

(a)(i) 1179 ;

one mark if not to the whole person e.g. 1179.24 / 1179.2 or if calculation correct but answer incorrect
e.g. 1.39×848.38 or $1.39 \times(84838000 / 100000)$ or if no calculation to check but answer given as 1180 [2]

3(a)(ii)

3(b)

3(d)

3(e)

provides information about / AW, proportion / percentage, (of population) affected / AW :

2 to, make (valid) comparisons / compare ; between countries / in one country over time

3 provides information about severity of disease ; AW
4 population size, taken into account / different for different countries / changes over time in a country ; do not need 'size' if 'use of 'population' is in correct context
5 idea that countries with larger populations will usually have more cases / higher number of cases may just mean larger population of country;

6 AVP ; gives guidance about whether the disease is, spreading / becoming an epidemic / dying out (in one country) in context of over time idea that number of cases per 100000 are, standardised / normalised, values
7 use of data to support ; only two of Chad, Eritrea or Ethiopia where comparisons between countries stated I ref. to other countries (2009) actual cases and standardised cases
comparison (2009) to support mp 5 population size and actual cases
stated values of similar number of cases per 100000 and populations of different sizes
countries compared, number of cases per 100000 for any stated year, with comment about severity
number of cases per 100000 for one country over time withcomment about severity / spreading / dying out / control / AW

MEGA LECTURE

Online Classes : Megalecture@gmail.com
 www.youtube.com/megalecture

Fig. 3.1 shows the percentage of children vaccinated against measles over a ten year period from 2003 to 2012.

The percentage vaccinated represents children under one year of age who have been given at least one dose of the vaccine against measles in the given year
The data are for the six African countries shown in Tablo 3.1

Mark scheme

vilues of percentage vaccinated to describe increasing / decreasing percentage vaccination
support
1 Gambia high percentage vaccinated (throughout) and low number of cases ;
A Eritrea
2 data to support; e.g. a percentage vaccination for a year and number of cases (same, or following, year after vaccination) or range given for percentage vaccinations over the whole, or stated number of years or a compilation of the two
partial / weak, support
3 Central African Republic decreasing vaccination and number of cases in 2011, higher / 15.31
4 Chad (from 2008) increasing percentage vaccination and, low / stated, number of cases,
2009 / 2010 / 2012 ,
1.451 .660 .96
do not support
5 Niger / Ethiopia / Chad, (generally) increasing percentage vaccinated and
number of cases, fluctuates / increase and decrease (ora) / AW ;
A stated correct data to show increase and decrease
A for Chad if mp 4 given and ref. to increase / 71.6 in 201
6 (generally) increasing percentage vaccinated and number of cases, increases / goes from 2.34-4.67, in 2011 in Niger or increases / goes from 1.39-4.86, in 2010 in Ethiopia or increases / goes from 1.66-71.6, in 2011 in Chad A 1.45-1.66 in 2010
7 Central African Republic decreasing vaccination and low number of cases in, 2009 / 2010 / 2012 :

8 / 9 AVP ;; e.g.

- idea that most values for number of cases are low irrespective of vaccination percentage
- ref.to needs, high / 90\%, vaccination to be effective A < 80\% / low, vaccination ineffective
- idea that generally Gambia / Eritrea, have higher percentage vaccinated and have lower number of cases than, (three of) Ethiopia, Chad, Central African Republic, Niger / the other countries

MEGALECTURE

www.youtube.com/megalecture

www.megalecture.com

(b) Vaccination is known to protect populations againstinfectious diseases.

Some of the data in Table 3.1 (on page 4) and Fig. 3.1 (on page 6) support this statement.
Describe the data that ssiupport this statement and comment on the data that do not support this statement.
Fountry puidence that prover the statement is soohas the Gountig like Exitrea in $\mathbf{z o l l}$, which hat 99% of children Woacinoled have 0.85 per loo000: capers of measfer. Ths suggest that to when higher number of people vocunpted theres should be leip. Cases of meaple.

Eurdence thot do not suppent the stotement ir Gambia haurig. 0.00 pes 100 ooo caras of mearive whene only..... 54% of children being vacinated. This. sugget thot the evtdence has an error because theren a chane the other 46% are expored to aie bexpone..........ing..... mearles. ..[4]
(c) The succossful eradication of smallpoxinvolved an intensive global vaccination programme. It is hoped that the same can be-actieved with measles.

Outline two features; apart from cost, of the smallpox eradication programme that may have made it easier to eradicate than measles.
...). SMalthe DNA of simallpox is stafic a of if doe not changs........ of moulant hence eapy to promione torge number voecrnes.
...)...... Settec son statron management.
\qquad
\qquad
(d) State precisely the type of immunity gained'by receiving a measles vaccine.
\qquad [1]

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

(e) Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered.

State two examples of these costs.
to grow the bactersa

1 The cost of incubators to grew the b*o expeninive \qquad

The cost dor producing

. ! . . 1. .[2]
[Total: 14]

4 Fig. 4.1 is a simplified diagram of the circulatory system of a mammal. Some of the lymph system is also shown.

Fig. 4.1

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 2 (May/June 2016), Question 4 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(e) Planning the prevention: and control of measles using a vaccination programme means that financial costs must be considered.

State two examples of these costs.

1Productiton... 86 ...thene. ...vaccines. \qquad

2 ..Storage...and. Itranspos...\&f..these...vaccines.

\qquad

4 Fig. 4.1 is a simplified diagram of the circulatory system of a mammal. Some of the lymph system is also shown.

Fig. 4.1

4(b) \square

0.4	Mark scheme
(a)	blood contained in (blood) vessels AW or blood contained in any three of heart, arteries, veins, capillaries :

systemic and pulmonary, systems / circulation ; A 'systematic A described if circulations not named
e.g. for each complete circuit (round the body) passes through heart twice from heart to lungs and back, then to (rest of) body and back
(b) \quad W = aorta / aortic arch
$X=$ pulmonary vein
$Y=$ right atrioventricular / tricuspid, (valve)
$Z=$ left, atrium / auricle ;

(c)	red blood cells; \quad A rbc
A platelets	

A plasma proteins / named[1]
(d) $\quad \mathbf{1}$ idea of carbon dioxide out (of blood to alveolus) and oxygen in (to alveolus from blood) ;

$$
2 \text { diffusion / diffuses }
$$

or
(mon
(movement from) high concentration to low concentration / down concentration gradient ; A diffusion / pressure, gradient
3 (across) squamous epithelium / squamous cells (of alveolar wall) A pavement cells
4 (and) endothelium / endothelial cells (of capillary wall) :
A squamous cells but must be clear that this is for capillary wall
5 oxygen, into / AW, red blood cells ; I oxygen binds to Hb
6 steep gradient maintained by, ventilation / uptake by haemoglobin / blood
carries oxygen away / blood arrives with carbon dioxide / deoxygenated blood arriving low in oxygen
\square (e)(i) $\mathrm{F}=$ nucleolus; A nucleus
$\mathrm{G}=$ cell surface / plasma, membrane
(e)(ii) transport / transporter / carrier, protein ; R pump protein specific protein
glucose, binding site / AW ; I glucose binds R glucose receptor specific binding site (in protein) $=2$ marks
(glucose binding causes) conformational change ; AW, e.g. changes shape
passive / no energy required / no ATP required
movement is, down the concentration gradient / from high to low concentration ; must be in context of through the membrane protein

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(a) The type of circulatory system shown in Fig. 4.1 is-a closed double circulation.

Explain what is meant by a closed double circulation

a. complete circuit...so...klood...nexer..leanes..the...vessels, \qquad
'bouble'...because...in one complete.. exculation....blood..passes.through \qquad
.the ...heart...turica \qquad
(b) With reference to Fig. 4.1, name:
blood yessel wAorta.
blood vessel $X \quad$...Pulmanary Vein.
valve Y Tricuspid.valve. (Abrionentricular valve)
heart chamber \mathbf{Z}.. Lefet....Atrivm.
(c) State the component present in the blood at location \mathbf{P} that is not present-in the lymph at location \mathbf{Q} in Fig. 4.1.
........Red...Blood....Calls. .[1]
(d) As blood passes through the capillary network in the lungs, gas exchange occurs. Describe the process of gas exchange between the alveolus and the blood.
 one-cen-thick
 alvealus and. its curvature diffustion distance, is short and diffusion surface area is. high. Ss at.high. rate, O2. disealves m.moist. lining. Gz alvechor
internal wall sitnen. diffuses...through. wall. entering. through gaps.in............ phospholipid...bilousex...and .through same...rowte. into...sapivary. bioding...

 capillory holes. through phosphalipid. . bailoyer. through alveclar... Whil...by swame. path, dissolving in moist...lining. and. diffustog into ..aic.inside, alvechus.........

\square

04	Mark scheme
(a)	blood contained in (blood) vessels AW or blood contained in any three of heart, arteries, veins, capillaries ; systemic and pulmonary, systems / circulation ; A 'systematic' A described if circulations not named e.g. for each complete circuit (round the body) passes through heart twice from heart to lungs and back, then to (rest of) body and back
(b)	```W = aorta / aortic arch ; X = pulmonary vein ; Y = right atrioventricular / tricuspid, (valve); Z = left, atrium / auricle ;```
(c)	red blood cells; A rbc A platelets A plasma proteins / named [1]
(d)	1 idea of carbon dioxide out (of blood to alveolus) and oxygen in (to alveolus from blood) ; 2 diffusion / diffuses or (movement from) high concentration to low concentration / down a concentration gradient ; A diffusion / pressure, gradient 3 (across) squamous epithelium / squamous cells (of alveolar wall) ; A pavement cells 4 (and) endothelium / endothelial cells (of capillary wall) ; A squamous cells but must be clear that this is for capillary wall 5 oxygen, into / AW, red blood cells ; I oxygen binds to Hb 6 steep gradient maintained by, ventilation / uptake by haemoglobin / blood carries oxygen away / blood arrives with carbon dioxide / deoxygenated blood arriving low in oxygen [max 4]
(e)(i)	$\mathrm{F}=$ nucleolus ; A nucleus $\mathrm{G}=$ cell surface / plasma, membrane ;
(e)(ii)	transport / transporter / carrier, protein ; R pump protein specific protein ; glucose, binding site / AW ; I glucose binds R glucose receptor specific binding site (in protein) $=2$ marks (glucose binding causes) conformational change ; AW, e.g. changes shape passive / no energy required / no ATP required ; movement is, down the concentration gradient / from high to low concentration ; must be in context of through the membrane protein [max 3] [Total: 16]

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select

www.megalecture.com

(e) As blood passes through the small intestine, small soluble products of digestion such as glucose are absorbed into the capilaries to be transported to the liver.
Fig. 4.2 is a transmission electron micrograph of intestinal epithellal cells.

gut lumen
direction of movement of gluçese during absprption

Fig 4.2

(i) Write the name of cell structures \mathbf{F} and \mathbf{G} in the boxes provided on Fig. 4.2.
(ii) At the surface labelled \mathbf{S}, movement of glucose molecules out of the intestinal epithelial cell occurs by facilitated diffusion.
Outline the features of facilitated diffusion of glucose molecules. Transmembrane
lassive .process...fotein molecule in...cos. membrane is an channel. ..protein ..that hos...a.bydraploilic...channel..through.iti...this. .allous....
 down... its ..caricantration...gradient. If.. would..not...be abble to..pass... tharegh. hydraptrobic . segion. \&f bilayer.. Pbocoss. is ... passive..sa.... .sRquixRes...NO...ATP...OF...energy: \qquad

04	Mark scheme
(a)	blood contained in (blood) vessels AW or blood contained in any three of heart, arteries, veins, capillaries ; systemic and pulmonary, systems / circulation ; A 'systematic' A described if circulations not named e.g. for each complete circuit (round the body) passes through heart twice from heart to lungs and back, then to (rest of) body and back
(b)	```W = aorta / aortic arch ; X = pulmonary vein ; Y = right atrioventricular / tricuspid, (valve) ; Z = left, atrium / auricle ;```
(c)	red blood cells ; A rbc A platelets A plasma proteins / named
(d)	1 idea of carbon dioxide out (of blood to alveolus) and oxygen in (to alveolus from blood) ; 2 diffusion / diffuses or (movement from) high concentration to low concentration / down a concentration gradient ; A diffusion / pressure, gradient 3 (across) squamous epithelium / squamous cells (of alveolar wall) ; A pavement cells 4 (and) endothelium / endothelial cells (of capillary wall) ; A squamous cells but must be clear that this is for capillary wall 5 oxygen, into / AW, red blood cells ; I oxygen binds to Hb 6 steep gradient maintained by, ventilation / uptake by haemoglobin / blood carries oxygen away / blood arrives with carbon dioxide / deoxygenated blood arriving low in oxygen [max 4]
(e)(i)	$\mathrm{F}=$ nucleolus ; A nucleus $\mathrm{G}=$ cell surface / plasma, membrane ;
(e)(ii)	transport / transporter / carrier, protein ; R pump protein specific protein ; glucose, binding site / AW ; I glucose binds R glucose receptor specific binding site (in protein) $=2$ marks (glucose binding causes) conformational change ; AW, e.g. changes shape passive / no energy required / no ATP required ; movement is, down the concentration gradient / from high to low concentration ; must be in context of through the membrane protein [max 3] [Total: 16]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(e) Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered.

State two examples of these costs.

to grow the bactecia

1 The cost...............ncubators to ore exow expensine \qquad
\qquad \therefore

\qquad
[Total: 14]

4 Fig. 4.1 is a simplified diagram of the circulatory system of a mammal. Some of the lymph system is also shown.

Fig. 4.1

04 Mark scheme

| (a) | blood contained in (blood) vessels AW
 or
 blood contained in any three of
 heart, arteries, veins, capillaries |
| :--- | :--- | heart, arteries, veins, capillaries

systemic and pulmonary, systems / circulation ; A 'systematic A described if circulations not named
e.g. for each complete circuit (round the body) passes through heart twice from heart to lungs and back, then to (rest of) body and back
(b) $\quad \mathrm{W}=$ aorta / aortic arch
$X=$ pulmonary vein
$Y=$ right atrioventricular / tricuspid, (valve)
$Z=$ left, atrium / auricle ;

(c) \quad red blood cells; A rbc

A plasma proteins / named[1]
\square
(d) 1 idea of carbon dioxide out (of blood to alveolus) and oxygen in (to alveolus from blood) ;
2 diffusion / diffuses
or
(movement from) high concentration to low concentration / down concentration gradient; A diffusion / pressure, gradient
3 (across) squamous epithelium / squamous cells (of alveolar wall) A pavement cells
4 (and) endothelium / endothelial cells (of capillary wall) :
A squamous cells but must be clear that this is for capillary wall
5 oxygen, into / AW, red blood cells ; I oxygen binds to Hb
6 steep gradient maintained by, ventilation / uptake by haemoglobin / blood
carries oxygen away / blood arrives with carbon dioxide / deoxygenated blood arriving low in oxygen
$F=$ nucleolus ; A nucleus
$\mathrm{G}=$ cell surface / plasma, membrane
transport / transporter / carrier, protein ; R pump protein specific protein
glucose, binding site / AW ; I glucose binds R glucose receptor specific binding site (in protein) $=2$ marks
(glucose binding causes) conformational change ; AW, e.g. changes shape
passive / no energy required / no ATP required
movement is, down the concentration gradient / from high to low concentration ; must be in context of through the membrane protein

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(a) The type of circulatory system shown in Fig. 4.1 is.a-closed double-circulation.

Explain what is meant by a closed double circulation...
It Is when deoxgg.enoted blood goes-to. the heart, to the punpr...... to the lungs.and Oxgenotd blood goes to the heat again and to the all ane ports of the body- and bo the t
(b) With reference to Fig. 4.1, name:
blood vessel W

pot	aora
pulmonory vern	
tricuspld value	
right atrium.	

\therefore • :
blood vessel \mathbf{X}
valve Y
heart chamber \mathbf{Z} right afrium.
(c) State the component present in the blood at location \mathbf{P} that is notpresent in the lymph at location a in Fig. 4.1.
\qquad
(d) As blood passes through the capillary network in the lungs, gas exchange occurs. '

Describe the process of gas exchiange between the alveolus and the blood.
... Sloot carme a Deoxygnatod blood carros pump by - the heod atchigh prowne and difforman, oceur, botuen the blood ond the alveglue. Exygen mover fum hogh conourtrato. - wot the long parang thitigh thenmantion of into the brod.
 alveolus, as -
\qquad

04	Mark scheme
(a)	blood contained in (blood) vessels AW or blood contained in any three of heart, arteries, veins, capillaries ; systemic and pulmonary, systems / circulation ; A 'systematic' A described if circulations not named e.g. for each complete circuit (round the body) passes through heart twice from heart to lungs and back, then to (rest of) body and back
(b)	```W = aorta / aortic arch ; X = pulmonary vein ; Y = right atrioventricular / tricuspid, (valve); Z = left, atrium / auricle ;```
(c)	red blood cells; A rbc A platelets A plasma proteins / named
(d)	1 idea of carbon dioxide out (of blood to alveolus) and oxygen in (to alveolus from blood) ; 2 diffusion / diffuses or (movement from) high concentration to low concentration / down a concentration gradient ; A diffusion / pressure, gradient 3 (across) squamous epithelium / squamous cells (of alveolar wall) ; A pavement cells 4 (and) endothelium / endothelial cells (of capillary wall) ; A squamous cells but must be clear that this is for capillary wall 5 oxygen, into / AW, red blood cells ; I oxygen binds to Hb 6 steep gradient maintained by, ventilation / uptake by haemoglobin / blood carries oxygen away / blood arrives with carbon dioxide / deoxygenated blood arriving low in oxygen [max 4]
(e)(i)	F = nucleolus ; A nucleus $\mathrm{G}=$ cell surface / plasma, membrane ;
(e)(ii)	transport / transporter / carrier, protein ; R pump protein specific protein ; glucose, binding site / AW ; I glucose binds R glucose receptor specific binding site (in protein) $=2$ marks (glucose binding causes) conformational change ; AW, e.g. changes shape passive / no energy required / no ATP required ; movement is, down the concentration gradient / from high to low concentration ; must be in context of through the membrane protein [max 3] [Total: 16]

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

(e) As blood passes through the small intestine, small soluble próducts of digestion such as glucose are absorbed into the capillaries to be transported to the liver.
Fig. 4.2 is a transsmission electron micrograph of intestinal opitholial cells.
\qquad
,Fig $4.2 \quad \because$,
(i) Write the name of cell structures \mathbf{F} and \mathbf{G} in the boxcs provided on Fig. 4.2.
(ii) At the surface labelled S , movement of glucose molecules out of the intestinal epithelial cell oćcurs by facilitated diffusion.
i \therefore (
Outlinè the features of facilitatéd diffusion of gluciose molocules. i \therefore

- Griwiose moins through the pietem chinnet by :Idffosten as: in the aintestme gl concentrotfon of glucoic or hagh than the ipell thoy : olveore ententer.
\qquad $\cdots \quad \cdots \quad \therefore \quad \therefore$ \qquad
\qquad
\qquad
\qquad
\qquad

	04	Mark scheme
4(b)	(a)	blood contained in (blood) vessels AW or blood contained in any three of heart, arteries, veins, capillaries ; systemic and pulmonary, systems / circulation ; A 'systematic' A described if circulations not named e.g. for each complete circuit (round the body) passes through heart twice from heart to lungs and back, then to (rest of) body and back
	(b)	```W = aorta / aortic arch ; X = pulmonary vein ; Y = right atrioventricular / tricuspid, (valve); Z = left, atrium / auricle ;```
4(c)	(c)	red blood cells; A rbc A platelets A plasma proteins / named
4(d)	(d)	1 idea of carbon dioxide out (of blood to alveolus) and oxygen in (to alveolus from blood) ; 2 diffusion / diffuses or (movement from) high concentration to low concentration / down a concentration gradient ; A diffusion / pressure, gradient 3 (across) squamous epithelium / squamous cells (of alveolar wall) ;

concentration gradient, A diffusion/pressure, gradient
3 (across) squamous epithelium / squamous cells (of alveolar wall) A pavement cells
4 (and) endothelium / endothelial cells (of capillary wall) ;
A squamous cells but must be clear that this is for capillary wall
5 oxygen, into / AW, red blood cells ; I oxygen binds to Hb
6 steep gradient maintained by, ventilation / uptake by haemoglobin / blood
carries oxygen away / blood arrives with carbon dioxide / deoxygenated blood arriving low in oxygen
$F=$ nucleolus ; A nucleus
$\mathrm{G}=$ cell surface / plasma, membrane
transport / transporter / carrier, protein ; R pump protein specific protein
glucose, binding site / AW ; I glucose binds R glucose receptor specific binding site (in protein) $=2$ marks
(glucose binding causes) conformational change ; AW, e.g. changes shape
passive / no energy required / no ATP required
movement is, down the concentration gradient / from high to low concentration ; must be in context of through the membrane protein [max 3] [Total: 16]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

(e) Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered.

State two examples of these costs.

 \qquad
\qquad
 ...the Costs. \qquad

4 Fig. 4.1 is a simplified diagram of the circulatory system of a mammal. Some of the lymph system is also shown.

Fig. 4.1

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture www.megalecture.com

(a) The type of circulatory system shown in Fig. 4.1 is a closed double circulation.

Explain what is meant by a closed double circulation.
.-... 'closed' manks same biend pass theach .one phace trice which i wean the

 \qquad
\qquad
\qquad
(b) With reference to Fig. 4.1, name:

blood vessel W	Aratar..
blood vessel X	phmonarykein.
valve Y	
heart chamber \mathbf{Z}	Left. atsion

(c) State the component present in the blood at location \mathbf{P} that is not present in the lymph at location Q in Fig. 4.1.
.....................Corbon dioxide
(d) As blood passes through the capillary network in the lungs, gas exchange occurs.

Describe the process of gas exchange between the alveolus and the blood.
 He concouktiation gindient, And the axyen contain in the ...

 goin crathen dioxide and theleased orypen

Your Mark
4(a)

Q4	Mark scheme
(a)	blood contained in (blood) vessels AW or blood contained in any three of heart, arteries, veins, capillaries :

systemic and pulmonary, systems / circulation ; A 'systematic A described if circulations not named
e.g. for each complete circuit (round the body) passes through heart twice from heart to lungs and back, then to (rest of) body and back

(b) $\quad \mathrm{W}=$ aorta / aortic arch
$X=$ pulmonary vein
$Y=$ right atrioventricular / tricuspid, (valve)
$Z=$ left, atrium / auricle ;

(c) \quad red blood cells;	A rbc
A platelets	

A plasma proteins / named
[1]

4(e)(i)

4(e)(ii)

\qquad
\qquad
\qquad
\qquad
(e) As blood passes through the small intestine, small soluble products of digestion such as glucose are absorbed into the capillaries to be transported to the liver.

Fig. 4.2 is a transmission electron micrograph of intestinal epithelial cells.

$$
\text { gut lumen } \xrightarrow[\text { direction of movement of alucose during absorption }]{ } \text { capillary }
$$

direction of movement of glucose during absorption

Fig 4.2

(i) Write the name of cell structures \mathbf{F} and \mathbf{G} in the boxes provided on Fig. 4.2. [2]
(ii) At the surface labelled \mathbf{S}, movement of glucose molecules out of the intestinal epithellal cell occurs by facilitated diffusion.

Outline the features of facilitated diffusion of glucose molecules.

 ...icll..mentinne.
\qquad
\qquad
\qquad
\qquad
\qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 2 (May/June 2016), Question 5 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

5 Fig. 5.1 shows plant cells in stages of mitosis.

Fig. 5.1
(a) Incividual chromosomes cannot be seen in the cell at the start of prophase. Changes to the chromatin occur so that by late prophase chromosomes are clearly visible.
(i) Outline what occurs during early prophase so that chromosomes become visible in late prophase.
... F. The chromatin omolenses and oolus \qquad during early prophase, \qquad
(ii) Describe the structure of the chromosome in late prophase.
(3) onentter hromatias are attaoned to eachother at the centromere, - The chremems The hane a $-$ cap at the end calley felomene. Coiled, , softicoks plike two ilenticule stranas. the attachedat the eintre \qquad whion has the same length. ...[3]

5(a)(i)	05	Mark scheme	
	(a) (i)	coiling / supercoiling / condenses / condensation A become shorter and thicker \mathbf{R} contracts	[1]
	(a)(ii)	accept from labelled diagram wo chromatids identical / sister, chromatids ; joined by a centromere ; A kinetochore one from (reach chromatid) DNA complexed with protein histone proteins / histones ; telomeres at end of chromatids	[max 3]
5(b)	(b)	metaphase versus anaphase idea of single chromosome of two chromatids versus two separated chromatids / daughter chromosomes e.g. two chromatids versus, one chromatid / one daughter chromosome ; sister chromatids joined at centromere versus chromatids separateddistance between sister chromatids zero versus increasing distance between chromatids share a centromere versus do not share a centromere / centromere divides two DNA molecules versus one DNA molecule ; at, equator / metaphase plate versus towards / at, poles ; \mathbf{R} centre \mathbf{R} ends linear / straight versus V shape / AW : [max 2]	
5(c)	(c)	acts at target cell ; binds to receptor: \mathbf{R} receptor cells allow ecf for other mps ref. specificity ; A receptor complementary (shape) for cytokinin A cytokinin fits into receptor this is also mp2 A recognition of cytokinin by receptor receptor (located) in, cell surface / plasma, membrane : A cell membrane \mathbf{A} phospholipid bilayer \mathbf{A} transmembrane receptor sets off / AW, response in the cell / described response(s) ; e.g. triggers secondary messenger activates enzyme(s) \| signals / causes / stimulates, cell to divide / cytokinesis (acts) extracellularly/ extracellular signal or (acts) intracellualy $/$ intracellular signal ; must be in context of candidate's answer	
EXAMINER MAF COMMENTS SCHE			

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

(b) State two differences between the chromosome at metaphase and the chromosome at late anaphase.

> The chromosomes at metaphase is lined up at the
> equator, haverer, at anaphase it is at oppooite
> poles.

The phromosemes at metaphase consists of two sister chromatiols
However, at anaphase thene is only 1 tonnectectat cent ter nere single chromatid, centromene pointing towards (c) One of the functions of a plart hormone known as cytokinin is to act as a cell signalling poles. molecule and promote cytokinesis.

Suggest how cytokinin acts as a cell signalling molecule.
specific
Cytokinin attchas attaches to the, chemical receptors on the cell membrane \#, the chemical receptors then activatos the G-protein to send out a seconolary messenger which amplifies the original signal, sending it to enzymes or specific cavsing them torresponse which give a specific
is cytokinesis ..3]

MEGALECTURE

www.youtube.com/megalecture

Select
page

5 Fig. 5.1 shows plant cells in stages of mitosis.

cell at the start

of prophase

Fig. 5.1
(a) Individual chromosomes cannot be seen in the cell at the start of prophase. Changes to the chromatin occur so that by late prophase chromosomes are clearty visible.
(i) Outine what occurs during early prophase so that chromosomes become visible in late prophase.
During eauly prophase, Chromatin in the nucleus ...condense to form chromosomes composed of two sister chromatids.[1]
(ii) Describe the structure of the chromosome in late prophase.

The chromosomes are short and thick
composed of two dhromatids containing. two DNA molecules
\qquad
\qquad
\qquad ..

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) State two differences between the chromosome at metaphase and the chromosome at late anaphase.
Duling metaphase, the chromosomes are alighed. at the equator with spindle fibres attached to the kinetochore molecule at thein centromere.
By late anaphase, the sister chromatids have. been mored apart to opposite ends of thepoles which is achieved by shortening of microtubites
(c) One of the functions of a plant hormone known as cytokinin is to act as a cell signalling molecule and promote cytokinesis.

Suggest how cytokinin acts as a cell signalling molecule.
Cytokinin activates the receptors (proteins) in the cell sorface membrane. Thereceptors. then transmit the sighal to the soglut protein whitch activates the second messenger and begins of a cascade of reactionsactivating other enzymes thereby amplifying the sighalnd causing the cell to undergo cy tokinesis

www.youtube.com/megalecture

www.megalecture.com

5 Fig. 5.1 shows plant cells in stages of mitosis.

Fig. 5.1
(a) Individual chromosomes cannot be seen in the cell at the start of prophase. Changes to the chromatin occur so that by late prophase chromosomes are clearly visible.
(i) Outline what occurs during early prophase so that chromosomes become visible in late prophase.
.........nucleor envelope breaks down in the ehromosomes \qquad 5(b)

..... Qre vi...ible due to breakdown of nuclear envelope.....ond nunleus. disappecuorce.
\qquad
iii) Describe the structure of the chromosome in late prophase.
...chromatids...joned tragether...at. the contromere to make a chromosome. The chromosomes....are.... Lying freely ono showly
center (to move to metaphase).
\qquad
\qquad
\qquad

5(a)(i)	05	Mark scheme	
	(a) (i)	coiling / supercoiling / condenses / condensation A become shorter and thicker \mathbf{R} contracts	[1]
	(a)(ii)	accept from labelled diagram two chromatids : identical / sister, chromatids ; joined by a centromere ; A kinetochore one from (reach chromatid) DNA complexed with protein histone proteins / histones ; telomeres at end of chromatids	[max 3]
5(a)(ii)	(b)	metaphase versus anaphase idea of single chromosome of two chromatids versus two separated chromatids / daughter chromosomes e.g. two chromatids versus, one chromatid / one daughter chromosome ; sister chromatids joined at centromere versus chromatids separateddistance between sister chromatids zero versus increasing distance between chromatids share a centromere versus do not share a centromere / centromere divides two DNA molecules versus one DNA molecule ; at, equator / metaphase plate versus towards / at, poles ; \mathbf{R} centre \mathbf{R} ends linear / straight versus V shape / AW ;	
5(c)	(c)	acts at target cell ; binds to receptor ; \mathbf{R} receptor cells allow ecf for oth ref. specificity ; A receptor complementary (shap A recognition of cytokinin by rec receptor (located) in, cell surface / plasma, membran sets off / AW, response in the cell / described respon triggers secondary messenger activates enzyme(s) I signals / causes / stimulates, cell to divide / cytokinesis (acts) extracellularly / extracellular signal or (acts) intr intracellular signal : must be in context of candida intracellular signal ; must be in context of candida	
EXAMINER COMMENTS			

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page
w.megalecture.com
(b) State two differences between the chromosome at metaphase and the chromosome at late anaphase.
.......hromosomes at metaphase ore (yigh lining at the equator (nnidle)
appasite...poiss \qquad
 ...joined...at..mntromere.....where as ...at.anaphase...they...are tuon.separge
 contromere)
(c) One of the functions of a plant hormone known as cytokinin is to act as a cell signalling molecule and promotẹ cytokinęsis.

Suggest how cytokinin acts as a cell signalling molecule.

action, which is cytokines is. \qquad ..
\qquad
\qquad
\qquad
\qquad ..[3] Total: 9]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 2 (May/June 2016), Question 6 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

6 One of the enzymes involved in glycogen synthesis is glycogen synthase. The monomer of the glycogen polymer is a-glucose.
(a) (i) Draw the ring form of α-glucose in the space provided.

(ii) Glycogen synthase catalyses the formation of a covalent bond between two α-glucose molecules during glycogen synthesis.

Name the type of bond formed. Glycasidicn...bond.
(iii) Glycogen branching enzyme is another enzyme that is required for glycogen synthesis. Suggest why glycogen branching enzyme is needed in addition to glycogen synthase. Enzymes ase specific and their active sites are complementory to only one type. of substrave and bond formation. Glycagen..... synthase is sperific to forming 1..4-2 glycosidic bonds and glycogen branching enzyme is specific to $1,6-\alpha \cdot \alpha$:glycosidic bond:1]
(b) The gene coding for glycogen synthase in muscle cells is known as GYS1.
(i) Explain what is meant by a gene.
A...specific....lenght... \&f ...nucleotidas .an...the...DNA...molecule....... .that cochs for a specific arder of amino acids........... a..specific polypeptide ... chain or....protein.

Your
\qquad

6(a)(ii) \square
6(a)(iii) \square

06	Mark scheme
(a)(i)	1. 2. two marks for correct drawing of ring structure ;; all atoms shown or one of diagrams 1-3 above one mark if, inconsistent / incomplete, drawing: diagram 1 - one missing H from any of carbons 2-6 (OH groups and rest of drawing must be correct) diagrams 2 and 3 - adding the H to one of carbons $1-5(\mathrm{OH}$ groups and rest of drawing must be correct)
(a)(ii)	glycosidic ; A glucosidic [1]
(a)(iii)	to form / has, (glycosidic α) 1-6, bonds / links (to make branches) ; ref. to different shaped / specific / complementary, active site required to form bonds (for branching) ;
(b)(i)	treat as neutral unit of inheritance sequence of, nucleotides / bases ; section / length / part, of DNA (molecule) ; codes for a polypeptide ; A protein for polypeptide \mathbf{A} enzyme A information to produce a polypeptide A codes / information, for sequence of amino acids / primary structure (of a, polypeptide / protein) R genetic code for a polypeptide
(b)(ii)	1 (in DNA / gene) altered, sequence / AW, of, nucleotides / bases ; I DNA sequence 2 base substitution or base / nucleotide, replaces another, base / nucleotide; A example must be in context of, DNA / gene 3 (mRNA synthesised) during transcription ; 4 (mutation leads to) altered / AW, mRNA / messenger RNA ; 5 (only) one (mRNA) codon changed / a different codon ; A one DNA, triplet / codon, changed I ref. to codons changed 6 tRNA, with / has, a different anticodon ; 7 (tRNA) brings, a different / a changed / the incorrect, amino acid, during translation / to the ribosome ; 8 codon-anticodon, binding / complementary / AW ; A matches \mathbf{R} amino acid with anticodon
(c)	$\begin{array}{ll}\text { nucleolus ; } & \mathbf{R} \text { if other cell structures given } \\ \text { mitochondrion; } & \mathbf{R} \text { if other cell structures given } \\ \text { rough endoplasmic reticulum or Golgi (body / apparatus / complex) ; [3] }\end{array}$

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

(ii) There are a number of known mutations for GYS1.

Outline how a mutation in GYS1 can lead to the formation of an altered polypeptide where one amino acid is replaced by a different amino acid.
A. base on. the sense. strand. in the gene is subsebtuthel. Ag. A. A... is replaced .by. G, when. Transcription cacuss, bathe . mRNA strand.
formed...by. complementary .base. paising. ...contains. .the incorxect...... codon. (specificto. altered...triphet.conle) mRNA. leaves.mucleus andi.binds. .to sibosome., chaing translation. tRNAs. .entex..ricosonne.io. turos and.... smino.ond Joins chain hewever. at.incorrect...codon, incarsect aninicadon .binals. to it so. different amino.ocid added to chain. In this wous. .primary ..struckwe.. of ..protrin. changed.
(c) Table 6.1 shows three functions of cell structures that are involved in the synthesis of glycogen synthase.

Complete Table 6.1 by naming the cell structure that carries out the function listed.
Table 6.1

function	name of cell structure
assembles ribosomes for polypeptide synthesis	rough encoplasmic reticulum.
synthesises ATP to provide a supply of energy for transcription of GYS1	mitochondria
folds and modifies synthesised polypeptide to produce functioning glycogen synthase	golgi apporatus

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

6 One of the enzymes involved in glycogen synthesis is glycogen synthase. The monomer of the glycogen polymer is α-glucose.
(a) (i) Draw the ring form of α-glucose in the space provided.

(ii) Glycogen synthase catalyses the formation of a covalent bond between two a-glucose molecules during glycogen synthesis.

Name the type of bond formed.
glycosedic bond:
..[1]
(iii) Glycogen branching enzyme is another enzyme that is required for glycogen synthesis.

Suggest why glycogen branching enzyme is needed in addition to glycogen synthase.
T..........atalys........the....... Yeaction......and.........as.teh...
.... the reaction by r..... reducing ...the activatiot
 \qquad ...[1]
(b) The gene coding for glycogen synthase in muscle cells is known as GYS1.
(I) Explain what is meant by a gene.

>nene.....is..............section...............N.A.... that..........codes........................e.e.ificin.a....acid......s.equence to pro.....................specific
triets lor characters.

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(ii) There are a number of known mutations for GYS1.

Outline how a mutation in GYS1 can lead to the formation of an altered polypeptide where one amino acid is replaced by a different amino acid.
..When...thexe....is........a......thange....in.....0.d.ex.....O.f.

.....used in............ansiliation.....that........mutatated...........

.......ercid......ins.tad....oif............normal........amino......acid
..............thene.....thas....difif.e.r.ent......hucleotide.......

(c) Table 6.1 shows three functions of cell structures that are invoived in the synthesis of glycogen synthase.

Complete Table 6.1 by naming the cell structure that carries out the function listed.
Table 6.1

function	name of cell structure
assembles ribosomes for polypeptide synthesis	nu Cleolus.
synthesises ATP to provide a supply of energy for transcription of GYSi	mito chondvia
folds and modifies synthesised polypeptide to produce functioning glycogen synthase	golgi apparatus

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

6 One of the enzymes involved in glycogen synthesis is glycogen synthase. The monomer of the glycogen polymer is α-glucose.
(a) (i) Draw the ring form of α-glucose in the space provided.

(ii) Glycogen synthase catalyses the formation of a covalent bond between two α-glucose molecules during glycogen synthesis.

Name the type of bond formed.
Gyporide Bond
(iii) Glycogen branching enzyme is another enzyme that is required for glycogen synthesis.

Suggest why glycogen branching enzyme is needed in addition to glycogen synthase.
This is necessary as the glycogen needs to have a compact shape fa slorage. \qquad .[1]
(b) The gene coding for glycogen synthase in muscle cells is known as GYSI.
(i) Explain what is meant by a gene.
A gene is the componeal of ONA
that hes the coding for different
proterns and amino acids. There are
numerous gener present in the DNA

Your Mark

6(a)(i) \square
6(a)(ii) \square
6(a)(iii) \square

two marks for correct drawing of ring structure i. all atoms shown or one of diagrams 1-3 above
one mark if, inconsistent / incomplete, drawing: diagram 1 - one missing H from any of carbons 2-6 (OH groups and rest of drawing must be correct)
diagrams 2 and 3 -adding the H to one of carbons $1-5(\mathrm{OH}$ groups and rest of drawing must be correct)
(a)(ii) [1]

(a)(iii)	to form / has, (glycosidic a) 1-6, bonds / links (to make branches) ; ref. to different shaped / specific / complementary, active site required to form bonds (for branching) ; [max 1]

(b)(i) treat as neutral unit of inheritance
sequence of, nucleotides / bases
section / length / part, of DNA (molecule) ;
codes for a polypeptide ; A protein for polypeptide A enzyme
A information to produce a polypeptide
6(b)(i)

A codes / information, for sequence of amino acids / primary structure (of a, polypeptide / protein)
R genetic code for a polypeptide
6(b)(ii)
 DNA sequence
2 base substitution or base / nucleotide, replaces another, base / nucleotide:
A example must be in context of, DNA / gene
3 (mRNA synthesised) during transcription;
4 (mutation leads to) altered / AW, mRNA / messenger RNA ;
5 (only) one (mRNA) codon changed / a different codon ; A one DNA, triplet / codon, changed I ref. to codons changed
6 tRNA, with / has, a different anticodon
7 (tRNA) brings, a different / a changed / the incorrect, amino acid, during translation / to the ribosome ;
8 codon-anticodon, binding / complementary / AW ; A matches \mathbf{R} amino acid with anticodon

| (c) | $\begin{array}{l}\text { nucleolus; } \\ \text { mitochondrion; }\end{array}$ | $\begin{array}{l}\mathbf{R} \text { if other cell structures given } \\ \mathbf{R} \text { if other cell structures given }\end{array}$ |
| :--- | :--- | :--- | mitochondrion; $\quad \mathbf{R}$ if other cell structures given rough endoplasmic reticulum or Golgi (body / apparatus / complex) ; [3]

[Total: 12]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(ii) There are a number of known mutations for.GYS1.

Outline how a mutation in GYS1 can lead to the formation of an altered polypeptide where one amino acid is replaced by a different amino acid.
As the gene hos mulated, the base sequence of the $m R N A$ will be altered , and \mid will have different coding when it enter sytaplesm, the trina and amino acid specifice to the altered gene will arrive at the ribosame, hence different polfpeptide is farned \qquad
(c) Table 6.1 shows three functions of cell structures that are Involvod in the synthesis of glycogen synthase.

Complete Table 6.1 by naming the cell structure that carries out the function listed.
Table 6.1

function	name of cell structure			
assembles ribosomes for polypeptide synthesis	Rough Endoplosmic			
Reticulum		$	$	Eynthesises ATP to provide a supply of
:---				
energy for transcription of GYSi	\quad Mitochondria	folds and modifies synthesised polypeptide to produce functioning glycogen synthase	Colgi Apparatus	
:---	:---			

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses
 Paper 3 (May/June 2016), Question 1
 Cambridge International AS \& A Level
 Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

WWW.megalecture.com

Before you proceed, read carefully through the whole of Question 1 and Question 2.
Plan the use of the two hours to make sure that you finish all the work that you would like to do.
If you have enough time, consider how you can improve the accuracy of your results, for example by obtaining and recording one or more additional measurements.

You will gain marks for recording your results according to the instructions.

1 Plant cells contain an enzyme, catalase, which catalyses the hydrolysis (breakdown) of hydrogen peroxide into oxygen and water. An extract of plant tissue contains catalase.

You are required to investigate the effect of temperature (independent variable) on catalase in a plant extract solution.

You are provided with:

labelled	contents	hazard	volume/cm ${ }^{\mathbf{3}}$
P	plant extract solution	none	100
H	hydrogen peroxide solution	harmful irritant	100

You are advised to wear suitable eye protection, especially when using the hydrogen peroxide solution, \mathbf{H}. If H comes into contact with your skin, wash off with cold water.
(a) When carrying out a practical procedure the hazards of using the solutions need to be considered. Then the level of risk needs to be assessed as low or medium or high.

State the hazard with the greatest level of risk when using the solutions then state the level of risk of the procedure: low or medium or high.
hazardnivnitant..................n ful...................... \qquad
level of riskmedium
(b) You are required to keep a sample of $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} to test at the temperature of the room.

Then heat the remaining solution in \mathbf{P} and remove $10 \mathrm{~cm}^{3}$ samples of the solution at different temperatures including a sample at the maximum temperature of $70^{\circ} \mathrm{C}$.
(i) Use the thermometer to measure the temperature of the room.
temperature
$22.5^{\circ} \mathrm{C}$ \qquad
(ii) You will need to test a sample of the solution in \mathbf{P} which has been heated to $70^{\circ} \mathrm{C}$.

State the other temperatures at which you will remove each sample.

Your Mark

1(a) \qquad
1(b)(i) \square
1(b)(ii) \square
1(b)(iii)

1(b)(iv) \square
1(b)(v) \square
1(b)(vi) \square

1(c) \square

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals : ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

www.youtube.com/megalecture

whooeshegatlecture.com

1. Put $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} into a petri dish labelled with the temperature of the room you recorded in (b)(i).
2. Gently heat the beaker labelled \mathbf{P}, containing the remaining solution.
3. When the temperature of the solution in \mathbf{P} reaches the lowest temperature stated in (b)(ii) remove the Bunsen burner.
4. Remove $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} and put it into a labelled petri dish.
5. Replace the Bunsen burner.
6. Repeat step 2 to step 5 for each of the temperatures stated in (b)(ii).
7. When the solution reaches $70^{\circ} \mathrm{C}$, remove the last sample and put it into a labelled petri dish.
8. Turn off the Bunsen burner.
9. Leave the solutions to cool while you cut squares of filter paper, $1 \mathrm{~cm} \times 1 \mathrm{~cm}$. You will need to decide how many squares to cut to give you confidence in your results.
10. Put a mark on the test-tube 2 cm from the top.
11. Put \mathbf{H} into the test-tube up to this mark.
12. Use forceps to pick up one square of filter paper and dip the whole square into the solution in the petri dish that is labelled with the temperature of the room.
13. Wipe the square against the petri dish to remove excess solution from both sides of the square.
14. Hold the square just below the surface of \mathbf{H} so that the top of the square is level with the surface of H as shown in Fig. 1.1.

Fig. 1.1
15. Immediately release the square (you may need to shake the forceps) and start timing.
16. Measure the time taken for the square to return to the surface. Record the time in (b)(iii).

If the time is more than 120 seconds, stop timing and record 'more than 120 '.

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b) (ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1 ; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

page
17. Remove the square from the test-tube.

Note: if the square remains at the bottom of the test-tube, pour off \boldsymbol{H} into the container labelled H. Use water in the beaker labelled 'Hor washing' to rinse out the square from the test-tube. Then repeat step 11.
18. Repeat step 12 to step 17 with each of the samples removed at the different temperatures.
(iii) Prepare the space below and record your results.

temperature $1{ }^{\circ} \mathrm{C}$	time taren for squate to veturn to surface $/ 5$	
	1	2
$300^{20.5}$	$10 *$	13
30.0	16	12
40-0	1819	16
50.0	21	21
60.0	35	35
70.0	more than 120	$\begin{aligned} & \text { more } \\ & \text { then } 120 \end{aligned}$

(iv) Identify two significant sources of error in this investigation.

 be......the samp.... for every ove..............nent repated speriment.

1(a)	01	Mark scheme
	(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
	(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
1(b)(ii)	(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals : ${ }^{\circ} \mathrm{C}$;
1(b)(iii)	(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
1(b)(iv)	(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
1(b)(v) 1(b)(vi)	(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
1(c)	(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled waterbath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
	(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

(v) Explain how the enzyme catalase was affected by the change in temperature
as temperatuag incre aves, the fine taren for ...

 (caratare)
to syrfas inchasede the fangmenfor if nolonser active at $70{ }^{\circ} \mathrm{C}$. This.

(vi) This procedure investigated the effect of temperature on the activity of catalase in the plant extract.

To modify this procedure for investigating another variable, the independent variable (temperature) would need to be standardised.
Describe how the temperature could be standardised.
.......uss...........a...............thermestaticaly.......contralled......water...
..............ath
Now consider how you could modify this procedure to investigate the effect of the concentration of catalase in the plant extract on the breakdown of hydrogen peroxide.

Describe how this independent variable, concentration of catalase, could be investigated.

> conoentration
......Pre poure..................different.........solutionss...of..............................smaple..........or.......serial dilubiong... of.......onuentrations......

.....so.....ennentration.........Aded....equal.....volume....... of.......sakalose.
 and measure time taken. Repeat for akurauy.

N	01	Mark scheme
	(a) (i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
	(b) (i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
1(b)(ii)	(b) (ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
1(b)(iii)	(b) (iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds 6. records results for repeats + means calculated ;
1(b)(iv)	(b) (iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
1(b)(vi)	(b)(v)	(conc/usions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ;
1(c)	(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution :
	(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase s-1 ; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm labelled at least each 2 cm ; 3. correct plotting of five bars 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(c) A student investigated the activity of catalase in plant extracts from different species of plants, $\mathbf{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}$ and V , by measuring the initial rate of activity.

Table 1.1 shows the results for this investigation.
Table 1.1

different plant species	initial rate of activity of catalase $/ \mathrm{s}^{-1}$
R	0.0750
S	0.1275
T	0.0900
U	0.0325
V	0.0625

You are required to use a sharp pencil for charts.
Plot a chart of the data shown in Table 1.1.

Your Mark
\qquad

0.1	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b) (ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

WWW.megalecture.com

Plan the use of the two hours to make sure that you finish all the work that you would like to do.
If you have enough time, consider how you can improve the accuracy of your results, for example by obtaining and recording one or more additional measurements.

You will gain marks for recording your results according to the instructions.

1 Plant cells contain an enzyme, catalase, which catalyses the hydrolysis (breakdown) of hydrogen peroxide into oxygen and water. An extract of plant tissue contains catalase.

You are required to investigate the effect of temperature (independent variable) on catalase in a plant extract solution.

You are provided with:

labelled	contents	hazard	volume $/ \mathrm{cm}^{\mathbf{3}}$
P	plant extract solution	none	100
H	hydrogen peroxide solution	harmful irritant	100

You are advised to wear suitable eye protection, especially when using the hydrogen peroxide solution, H. If H comes into contact with your skin, wash off with cold water.
(a) When carrying out a practical procedure the hazards of using the solutions need to be considered. Then the level of risk needs to be assessed as low or medium or high.

State the hazard with the greatest level of risk when using the solutions then state the level of risk of the procedure: low or medium or high.
hazard) Harmful.......................i....................................
level of riskm
(b) You are required to keep a sample of $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} to test at the temperature of the room. Sdasn P

Then heat the remaining solution in \mathbf{P} and remove $10 \mathrm{~cm}^{3}$ samples of the solution at different temperatures including a sample at the maximum temperature of $70^{\circ} \mathrm{C}$.
(i) Use the thermometer to measure the temperature of the room.
temperature \qquad $26^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$...[1]
(ii) You will need to test a sample of the solution in \mathbf{P} which has been heated to $70^{\circ} \mathrm{C}$.

State the other temperatures at which you will remove each sample.
$30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ (Maximum)

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1 ; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

wivop.phe efdytecture.com

1. Put $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} into a petri dish labelled with the temperature of the room you recorded in (b)(i).
2. Gently heat the beaker labelled \mathbf{P}, containing the remaining solution.
3. When the temperature of the solution in \mathbf{P} reaches the lowest temperature stated in (b)(ii), remove the Bunsen burner.
4. Remove $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} and put it into a labelled petri dish.
5. Replace the Bunsen burner.
6. Repeat step 2 to step 5 for each of the temperatures stated in (b)(ii).
7. When the solution reaches $70^{\circ} \mathrm{C}$, remove the last sample and put it into a labelled petri dish.
8. Turn off the Bunsen burner.
9. Leave the solutions to cool while you cut squares of filter paper, $1 \mathrm{~cm} \times 1 \mathrm{~cm}$. You will need to decide how many squares to cut to give you confidence in your results.
10. Put a mark on the test-tube 2 cm from the top.
11. Put H into the test-tube up to this mark.
12. Use forceps to pick up one square of filter paper and dip the whole square into the solution in the petri dish that is labelled with the temperature of the room.
13. Wipe the square against the petri dish to remove excess solution from both sides of the square.
14. Hold the square just below the surface of \mathbf{H} so that the top of the square is level with the surface of H as shown in Fig. 1.1.

Fig. 1.1
15. Immediately release the square (you may need to shake the forceps) and start timing.
16. Measure the time taken for the square to return to the surface. Record the time in (b)(iii).

If the time is more than 120 seconds, stop timing and record 'more than 120 '.

1(b)(ii) \square

1(b)(iii) \square

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1 ; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Note: if the square remains at the bottom of the test-tube, pour off \boldsymbol{H} into the container labelled H. Use water in the beaker labelled 'for washing' to rinse out the square from the test-tube. Then repeat step 11.
18. Repeat step 12 to step 17 with each of the samples removed at the different temperatures
(iii) Prepare the space below and record your results.

(iv) Identify two significant sources of error in this investigation.

$$
\begin{aligned}
& \text {.....donng........ bating... }
\end{aligned}
$$

Online Classes:Megalecture@gmail.com
 www.youtube.com/megalecture
 www.megalecture.com

(v) Explain how the enzyme catalase was affected by the change in temperature.

...jake the the.......................................

 tempsature affects the ate of reaction of the enzyne
(vi) This procedure investigated the effect of temperature on the activity of catalase in the plant extract.

To modify this procedure for investigating another variable, the independent variable (temperature) would need to be standardised.

Describe how the temperature could be standardised.
.....use.....thermustatically..

Now consider how you could modify this procedure to investigate the effect of the concentration of catalase in the plant extract on the breakdown of hydrogen peroxide.

Describe how this independent variable, concentration of catalase, could be investigated.
...We fitation to measure the fan different concentation of

1	01	Mark scheme
	(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
	(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
1(b)(ii)	(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals : ${ }^{\circ} \mathrm{C}$.
1(b)(iii)	(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
1(b)(iv)	(b) (iv)	(source of error with reason) appropriate error with reason e.g. concentration of hydrogen peroxide decreases appropriate error with reason e.g. different volumes of extract on each square of filter paper
1(b)(v)	(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs : (decreased / no activity) denatures or changed shape of active site ;
1(b)(vi)	(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
1(c)	(c)	(chart) 1. (x-axis) different plant species $+(y$-axis) initial rate of activity of catalase / s-1; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm labelled at least each 2 cm . 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(c) A student investigated the activity of catalase in plant extracts from different species of plants, $\mathbf{R}, \mathrm{S}, \mathrm{T}, \mathbf{U}$ and V , by measuring the initial rate of activity.

Table 1.1 shows the results for this investigation.

Table 1.1	
different plant species	initial rate of activity of catalase $/ \mathbf{s}^{-\mathbf{1}}$
R	0.0750
S	0.1275
T	0.0900
U	0.0325
V	0.0625

You are required to use a sharp pencil for charts.
Plot a chart of the data shown in Table 1.1.

Inina|
rake of
ackuty
of calalate

differest plant species.

Online Classes : Megalecture@gmail.com
 www.youtube.com/megalecture

Plan the use of the two hours to make sure that you finish all the work that you would like to do.
If you have enough time, consider how you can improve the accuracy of your results, for example by obtaining and recording one or more additional measurements.
You will gain marks for recording your results according to the instructions
1 Plant cells contain an enzyme, catalase, which catalyses the hydrolysis (breakdown) of hydrogen peroxide into oxygen and water. An extract of plant tissue contains catalase.

You are required to investigate the effect of temperature (independent variable) on catalase in a plant extract solution.

$$
\mathrm{H} \underset{\substack{\text { enatot } \\ \text { (catololt) }}}{\longrightarrow \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}}
$$

You are provided with:

labelled	contents	hazard	volume $/ \mathrm{cm}^{3}$
\mathbf{y}	plant extract solution	none	100
H	hydrogen peroxide solution	harmful irritant	$100 \mathrm{~cm}^{3}$

You are advised to wear suitable eye protection, especially when using the hydrogen peroxide solution, H. If H comes into contact with your skin, wash off with cold water
(a) When carrying out a practical procedure the hazards of using the solutions need to be considered. Then the level of risk needs to be assessed as low or medium or high.
State the hazard with the greatest level of risk when using the solutions then state the level of risk of the procedure: low or medium or high.
hazard ... Hac.mful irritont
(1) Keep level of risk ..IOW level
$P=\cdot\left(0 m^{\prime}(\mathrm{b})\right.$ You are required to keep a sample of $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} to test at the temperature of

$$
\begin{aligned}
& \text { Groom } \\
& \text { tcmp }
\end{aligned}
$$ the room.

Romalning $90 \quad$ Then heat the remaining solution in \mathbf{P} and remove $10 \mathrm{~cm}^{3}$ samples of the solution at different heat, 10, of temperatures including a sample at the maximum temperature of $70^{\circ} \mathrm{C}$.
d of
each.
(i) Use the thermometer to measure the temperature of the room.
$70^{\circ} \mathrm{C} \rightarrow \mathrm{MAX}$
temperature
$20 \cdot 3$
(ii) You will need to test a sample of the solution in \mathbf{P} which has been heated to $70^{\circ} \mathrm{C}$.

State the other temperatures at which you will remove each sample.

$$
50^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}, 7065^{\circ}, 70^{\circ}
$$

\qquad

1(b)(i) \square
1(b)(ii) \square
1(b)(iii) \square

1(b)(iv) \square

1(b)(v) \square
1(b)(vi) \square

1(c)

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b) (ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1 ; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

Proceed as follows:

1. Put $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} into a petri dish labelled with the temperature of the room you recorded in (b)(i).
2. Gently heat the beaker labelled \mathbf{P}, containing the remaining solution.
3. When the temperature of the solution in \mathbf{P} reaches the lowest temperature stated in (b)(ii), remove the Bunsen burner.
4. Remove $10 \mathrm{~cm}^{3}$ of the solution in \mathbf{P} and put it into a labelled petri dish.
5. Replace the Bunsen burner.
6. Repeat step 2 to step 5 for each of the temperatures stated in (b)(ii).
7. When the solution reaches $70^{\circ} \mathrm{C}$, remove the last sample and put it into a labelled petri dish.
8. Turn off the Bunsen burner.
9. Leave the solutions to cool while you cut squares of filter paper, $1 \mathrm{~cm} \times 1 \mathrm{~cm}$. You will need to decide how many squares to cut to give you confidence in your results.
10. Put a mark on the test-tube 2 cm from the top.
11. Put \mathbf{H} into the test-tube up to this mark.
12. Use forceps to pick up one square of filter paper and dip the whole square into the solution in the petri dish that is labelled with the temperature of the room.
13. Wipe the square against the petri dish to remove excess solution from both sides of the square.
14. Hold the square just below the surface of H so that the top of the square is level with the surface of H as shown in Fig. 1.1.

Fig. 1.1
15. Immediately release the square (you may need to shake the forceps) and start timing.
16. Measure the time taken for the square to return to the surface. Record the time in (b)(iii). If the time is more than 120 seconds, stop timing and record 'more than 120 ',

Your Mark
 1(a)

1(b) (i) \qquad
1(b)(ii) \square
1(b)(iii) \qquad

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1 ; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes : Megalecture@gmail.com
 www.youtube.com/megalecture
 www.megalecture.com

17. Remove the square from the test-fube.

Note: If the square remains at the bottom of the test-tube, pour off \boldsymbol{H} into the container labelled H. Use water in the beaker labelled 'for washing' to rinse out the square from the test-tube. Then repeat step 11.
18. Repeat step 12 to step 17 with each of the samples removed at the different temperatures.
(iii) Prepare the space below and record your results.

	$729^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
Time taver	$14 \cdot 28$	$42: 35$.	50.32	113.20	more than 120
Time faro	13.125	$50 \cdot 10$	49.23	115.56	more than 120
Time tar	- 14.56	49.81	51.06	$110 \cdot 23$	move than 120
Avg.	14.	47	150.61	113	more thon 120

(iv) Identify two significant sources of error in this investigation.

1. Reaction time is. hlgh in the investigotion \qquad
2. Impunties of the catalase solution might be mixed when new fitter paper is introduced after each temperature

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b) (v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com
 www.youtube.com/megalecture
 www.megalecture.com

(v) Explain how the enzyme catalase was affected by the change in temperature

When the temperature is increasing the time
taken for the catalase enzyme to react also increases and at $60^{\circ} \mathrm{C}$ the enzyme clenatures since the results shows a big difference between the resunts of $50^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$.
(vi) This procedure investigated the effect of temperature on the activity of catalase in the plant extract.

To modify this procedure for investigating another variable, the independent variable (temperature) would need to be standardised.

Describe how the temperature could be standardised.
Use thermatatic temperature

Now consider how you could modify this procedure to investigate the effect of the concentration of catalase in the plant extract on the breakdown of hydrogen peroxide.

Describe how this independent variable, concentration of catalase, could be investigated.
Use different concentration of emzyme, for exomple 5\% to 10% and same temperature and concentration of \qquad Plont extract Solution (ut filter paper by $1 \mathrm{~cm} \times 1 \mathrm{~cm}$. dip it on the plant concentration into different concentration of emyme catolore then tote neccord the time: \qquad

Your Mark
 1(a)

1(b)(i) \qquad
1(b)(ii) \square
1(b)(iii) \qquad

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b)(v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1 ; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

(c) A student investigated the activity of catalase in plant extracts from different species of plants, R, S, T, U and V, by measuring the initial rate of activity

Table 1.1 shows the results for this investigation.
Table 1.1

different plant species	initial rate of activity of catalase $/ \mathbf{s}^{-1}$
R	0.0750
S	0.1275
T	0.0900
U	0.0325
V	0.0625

You are required to use a sharp pencil for charts.
Plot a chart of the data shown in Table 1.1.

Your Mark
\square

1(b)(i) \qquad
1(b)(ii) \square
1(b)(iii)

1(b) (iv) \square
1(b)(v) \square
1(b)(vi) \square

1(c)

01	Mark scheme
(a)(i)	(risk assessment) (hydrogen peroxide) harmful or irritant + medium or high ;
(b)(i)	(measures room temperature) whole number or to half a degree $+{ }^{\circ} \mathrm{C}$;
(b)(ii)	(decides on interval for temperature) at least three additional temperatures + whole numbers + even intervals ; ${ }^{\circ} \mathrm{C}$;
(b)(iii)	(recording results) 1. table drawn + heading, temperature $+{ }^{\circ} \mathrm{C}$; 2. heading, time + seconds ; 3. records results for at least five temperatures ; 4. correct pattern of results ; 5. times recorded as whole seconds ; 6. records results for repeats + means calculated ;
(b)(iv)	(source of error with reason) appropriate error with reason ; e.g. concentration of hydrogen peroxide decreases appropriate error with reason ; e.g. different volumes of extract on each square of filter paper
(b) (v)	(conclusions) (as temperature increases, activity increases) more successful collisions or more enzyme-substrate-complexes / ESCs ; (decreased / no activity) denatures or changed shape of active site ; [2]
(b)(vi)	(modification to investigate another variable) 1. (to standardise temperature) stated temperature + thermostatically controlled water-bath ; 2. (independent variable) at least five concentrations of catalase ; 3. (method) simple dilution / proportional dilution / serial dilution ;
(c)	(chart) 1. (x-axis) different plant species + (y-axis) initial rate of activity of catalase / s-1; 2. (scale on x-axis) even width of bars + (scale on y-axis) 0.05 to 2 cm , labelled at least each 2 cm ; 3. correct plotting of five bars ; 4. five bars labelled with each horizontal line drawn as a thin line + each column labelled ;

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses
 Paper 3 (May/June 2016), Question 2 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

2 K1 is a slide of a stained transverse section through a plant leaf. You are not expected to be familiar with this specimen.

You are required to use a sharp pencil for drawings.
(a) (i) Draw a large plan diagram of the part of the leaf as shown by the shaded area in Fig. 2.1, to include observable features and two vascular bundles.

Fig. 2.1
You are expected to draw the correct shape and proportions of the different tissues.

02	Mark scheme
(a)(i)	(plan diagram) 1. plan diagram of appropriate size + no shading ; 2. no cells + at least two vascular bundles + correct section drawn ; 3. epidermis drawn as two lines drawn closely together ; 4. line drawn to show area of cells located at tip of leaf;
(a)(ii)	(drawing) 1. quality of line for outer wall of cells + size at least 50 mm across largest cell ; 2. only four cells drawn, each cell touching at least one other

2. only four cells drawn, each cell touching at least one other cell :
3. cell walls drawn as two lines close together ;
4. one cell which shows a difference from other cells ;
e.g. cell contains an inclusion
5. uses one label line + one label to cell wall ;

(b)(i) (ratio)

1. measures depth of midrib + diameter of the vascular bundle ;
2. records whole numbers or to 0.5 for both measurements ;
3. decides to use same units for both measurements
4. displays, in final ratio, larger number to smaller number ;
5. final answer as simplest ratio
(b)(ii) (conclusion)
(habitat) water + (feature) large air spaces or more air spaces or AVP ;
(c) (observable difference between leaf on K1 and leaf in Fig 2.2) organises comparisons into three columns with one column for features, one
headed K1 and one headed Fig. 2.2 ;
any three observable differences of comparison ;; e.g. K1 has more vascular bundles than Fig. 2.2

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(ii) Observe the epidermis in K1. These cells are not identical

Select one group of four adjacent (touching) cells which show some of the differences between these cells.

Make a large drawing of this group of four cells.
Each cell of the group must touch at least one other cell.
Use one ruled label line and label to identify the cell wall of one cell.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Fig. 2.2 is a photomicrograph of a stained transverse section through part of a leaf from a different type of plant.

You are not expected to be familiar with this specimen.

Fig. 2.2
(i) Use the line $\mathrm{X}-\mathrm{Y}$ to determine the simplest ratio of the depth of the midrib to the diameter of the vascular bundle.

You may lose marks if you do not show your working.

$$
X-Y \text { : diameter of vasculor bundle }
$$

$$
54 \mathrm{~mm}: 18 \mathrm{~mm}
$$

27: 9
9:3
$3: 1$
simplest ratio...............3:1 3:1
(ii) Suggest a habitat where this plant might grow and one observable feature, shown in Fig. 2.2, which adapts it to this habitat
habitat ... Inder a riker In the river fancr
feature ...Has many air spaces in the leaf

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

(c) Prepare the space below so that it is suitable for you to record observable differences between the leaf on K1 and the leaf in Fig. 2.2.

Record your observations in the space you have prepared.

Differences	
K1	Fig. 2.2
Palisade mesophyll cells are less packed	Polisade mesophyli cells are more packed
More air spaces between the vells	Less air spaces between the cells
Smatter vascular bundte Doesn't have sunken Stomata	barger-vascular bunelle Has sunken stomata

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

$2 \mathbf{K} 1$ is a slide of a stained transverse section through a plant leaf. You are not expected to be familiar with this specimen.

You are required to use a sharp pencil for drawings.
(a) (i) Draw a large plan diagram of the part of the leaf as shown by the shaded area in Fig. 2.1, to include observable features and two vascular bundles.

Fig. 2.1
You are expected to draw the correct shape and proportions of the different tissues.

02	Mark scheme
(a)(i)	(plan diagram) 1. plan diagram of appropriate size + no shading ; 2. no cells + at least two vascular bundles + correct section drawn ; 3. epidermis drawn as two lines drawn closely together ; 4. line drawn to show area of cells located at tip of leaf;
(a)(ii)	(drawing) 1. quality of line for outer wall of cells + size at least 50 mm across largest cell ; 2. only four cells drawn, each cell touching at least one other

2. only four cells drawn, each cell touching at least one other cell :
3. cell walls drawn as two lines close together ;
4. one cell which shows a difference from other cells ;
e.g. cell contains an inclusion
5. uses one label line + one label to cell wall ;

(b)(i) (ratio)

1. measures depth of midrib + diameter of the vascular bundle ;
2. records whole numbers or to 0.5 for both measurements ;
3. decides to use same units for both measurements
4. displays, in final ratio, larger number to smaller number ; 5. final answer as simplest ratio

(b)(ii) | (conclusion) |
| :--- |
| (habitat) water + (feature) large air spaces or more air spaces or |
| AVP ; |

(c) (observable difference between leaf on K 1 and leaf in Fig. 2.2) organises comparisons into three columns with one column for features, one
headed K1 and one headed Fig. 2.2
any three observable differences of comparison ;; e.g. K1 has more vascular bundles than Fig. 2.2

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(ii) Observe the epidermis in K1. These cells are not identical

Select one group of four adjacent (touching) cells which show some of the differences between these cells.

Make a large drawing of this group of four cells.
Each cell of the group must touch at least one other cell.
Use one ruled label line and label to identify the cell wall of one cell.

02 Mark scheme

(a)(i) \quad (plan diagram)

1. plan diagram of appropriate size + no shading ;
2. no cells + at least two vascular bundles + correct section drawn ;
3. epidermis drawn as two lines drawn closely together ;
4. line drawn to show area of cells located at tip of leaf;

| (a)(ii) | (drawing)
 1. quality of line for outer wall of cells + size at least 50 mm |
| :--- | :--- | across largest

cell ;
2. only four cells drawn, each cell touching at least one other cell ;
3. cell walls drawn as two lines close together ;
4. one cell which shows a difference from other cells ;
e.g. cell contains an inclusion
5. uses one label line + one label to cell wall ;

1. measures depth of midrib + diameter of the vascular bundle ;
2. records whole numbers or to 0.5 for both measurements ;
3. decides to use same units for both measurements ;
4. displays, in final ratio, larger number to smaller number ;
5. final answer as simplest ratio ;
(b)(ii) (conclusion)
(habitat) water + (feature) large air spaces or more air spaces or AVP ;
(c) (observable difference between leaf on K1 and leaf in Fig. 2.2) organises comparisons into three columns with one column for features, one
headed K1 and one headed Fig. 2.2 ;
any three observable differences of comparison ;; e.g. K1 has more vascular bundles than Fig. 2.2

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Fig. 2.2 is a photomicrograph of a stained transverse section through part of a leaf from a different type of plant.

You are not expected to be familiar with this specimen

Fig. 2.2
(i) Use the line $\mathrm{X}-\mathrm{Y}$ to determine the simplest ratio of the depth of the midrib to the diameter of the vascular bundle.

You may lose marks if you do not show your working. Defth ef midint $=50.5 \mathrm{~mm}$
Diameter of vascular bundle $=14.0 \mathrm{~mm}-20.0 \mathrm{~mm}$
eatib of detth of monnb : diameter of vascular burdle

$$
\frac{50.5 \mathrm{ec}}{20.0 \mathrm{Nel}}:+4.0-\frac{20.0 \mathrm{mel}}{20.0 \mathrm{mel}}
$$

$$
=(2.5 \times 5)=2(1)
$$

5.05 : 2
$5: 2$
simplest ratio ..
(ii) Suggest a habitat where this plant might grow and one observable feature, shown in Fig. 2.2, which adapts it to this habitat.
habitatDesert
reature ...vaculax bundles.....for..ansy.....from...the...ppidermis

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(c) Prepare the space below so that it is suitable for you to record observable differences between the leaf on K1 and the leaf in Fig. 2.2.

Record your observations in the space you have prepared.

Feature	slide k1	Fig 2.2
Vascular bundle	vascular bundles are close to the epidermis	Vascular bundle present in the central part of the leaf
Air spaces the air spaces are barger in size are smaller in size.	upper epidermis thinner	upper epidermis thicker
Epidemis	Palisade cells are less closely packed	palisade cells are more closely packed
Collenchyma cells	less mumber of collenchyma cells close to the lower epidermis	more number of collerichyma cells close to the lower epidermis

Your Mark

02	Mark scheme
(a)(i)	(plan diagram)

1. plan diagram of appropriate size + no shading ;
2. no cells + at least two vascular bundles + correct section drawn ;
3. epidermis drawn as two lines drawn closely together ; 4. line drawn to show area of cells located at tip of leaf;

(a)(ii) (drawing)

1. quality of line for outer wall of cells + size at least 50 mm across largest
cell ;
2. only four cells drawn, each cell touching at least one other cell :
3. cell walls drawn as two lines close together ;
4. one cell which shows a difference from other cells ;
e.g. cell contains an inclusion
5. uses one label line + one label to cell wall ;

(b)(i) (ratio)

1. measures depth of midrib + diameter of the vascular bundle ;
2. records whole numbers or to 0.5 for both measurements;
3. decides to use same units for both measurements
4. displays, in final ratio, larger number to smaller number ;
5. final answer as simplest ratio ;
(b)(ii) (conclusion)
(habitat) water + (feature) large air spaces or more air spaces or AVP ;
(c) (observable difference between leaf on K1 and leaf in Fig. 2.2) organises comparisons into three columns with one column for features, one
headed K1 and one headed Fig. 2.2 ;
any three observable differences of comparison ;i; e.g. K1 has more vascular bundles than Fig. 2.2

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

2 K 1 is a slide of a stained transverse section through a plant leaf. You are not expected to be familiar with this specimen.

You are required to use a sharp pencil for drawings.
(a) (i) Draw a large plan diagram of the part of the leaf as shown by the shaded area in Fig. 2.1, to include observable features and two vascular bundles.

Fig. 2.1
You are expected to draw the correct shape and proportions of the different tissues.
Mark scheme
2(a)(i)
Your Mark
\square
Se

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(ii) Observe the epidermis in K1. These cells are not identical.

Select one group of four adjacent (touching) cells which show some of the differences between these cells.

Make a large drawing of this group of four cells.
Each cell of the group must touch at least one other cell.
Use one ruled label line and label to identify the cell wall of one cell.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

(b) Fig. 2.2 is a photomicrograph of a stained transverse section through part of a leal from a different type of plant

You are not expected to be familiar with this specimen.

Fig. 2.2
(i) Use the line $\mathrm{X}-\mathrm{Y}$ to determine the simplest ratio of the depth of the midrib to the diameter of the vascular bundle.

You may lose marks if you do not show your working.

$$
\begin{aligned}
& \text { Depth of midrit }=2.8 \mathrm{~cm} \\
& \text { Diameler of vasc. buadie }=1.9 \mathrm{~cm}
\end{aligned}
$$

simplest ratio. \qquad म本亲 $19: 28$ \qquad ..[5]
(ii) Suggest a habitat where this plant might grow and one observable feature, shown in Fig. 2.2, which adapts it to this habitat.
habitatald holotat hoth hot dinote. \qquad
feature Hists.cxtixtom....thick cuticile \qquad[1]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

(c) Prepare the space below so that it is suitable for you to record observable differences between the leaf on K1 and the leaf in Fig. 2.2.

Record your observations in the space you have prepared.

Differences	K_{1}	Fig. 2.2
Air space	large. In the conter	small, on the upper epidermis
xylem	No	Yes. in the centre as a circle
phloem	No	Yes, around the xylem
The sive between the epidermis res and others	All the cells have nearly the same sias	The cells near the owes. epdermis is larger than on the epidenturs

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 1 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

1 (a) ATP and NAD both play important roles in respiration. Doth compounds are nucleotides. Fig. 1.1 represents the molecularstuctures of ATP and NAD.

ATP

NAD
D

Fig. 1.1
Using Fig. 1.1, compare the structures of ATP and NAD. ATP contains que nitra gemns base (admine). ... while NAD has two nitrognous boses, wone purrine cand one pyrimidime ATP has therce.phasphate grovip. while $N A D$ has two. ATP ATP has one pentase sugar (ribose) while $N A D$ has two p.utoix suggras
\qquad
\qquad
\qquad ... 3]

Fig. 1.1

Your Mark

1(a) \qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select

www.megalecture.com

(b) ATP provides an immediate energy source for metabolic processes such as anabolic reactions.

State two examples of anabolic reactions in a mammal that require ATP-as an energy source,
1 ..
D.N.A.....x.eplication
2. \qquad pratein snyitlisis
(c) Name the type of cherrical reaction by which:ATP is made during the Kiebs cycle.
......................sutastrute lesel phospharmbatiom \qquad [1]
(d) Outline the roles of NAD in the cytoplasm of a cell.

Your
\square

01 Mark scheme

(a) $\quad \begin{aligned} & \text { both have ribose (sugars) ; } \mathbf{R} \text { ribulose } \\ & \text { ATP }\end{aligned}$

ATP has 1, ribose / pentose / sugar, NAD has 2 ; I ref. to additional hexose
both have, adenine / purine (base) ; I adenosine
NAD has, nicotinamide / pyrimidine (base) :
ATP has 3 phosphates, NAD has 2 ;
[max 3]
(b) accept synthesise / produce / convert to, for 'make' for all mp make (named), protein / polypeptide / peptides; A protein synthesis / translation
make (named), disaccharide / oligosaccharide / polysaccharide /
glycogen ; R nonmammalian examples such as starch or cellulose make (named), triglycerides / lipids / phospholipids / steroids /
cholesterol;
A glycogenesis
make, nucleotide / polynucleotide / nucleic acid / DNA / RNA ;
A transcription / DNA replication
AVP ; e.g. named example of, polymerisation / condensation A phosphorylation examplé
[max 3]

(c)	substrate-linked / substrate-level, phosphorylation ; I condensation reaction\quad [1]

(d) hydrogen, carrier / acceptor ; A gets reduced or gains $\mathrm{H} / \mathrm{H}^{+}$and electrons
I donates $\mathbf{R} \mathrm{H}_{2}$ / hydrogen molecules
(acts as a) coenzyme ; A enables dehydrogenases to work
ref. to glycolysis / respiration in anaerobic conditions; A anaerobic respiration
I aerobic
[max 2]
(e) 'more' needed once plus implied for second mp

1 more, C-H bonds / hydrogen(s) / reduced ; I C-C bonds \mathbf{R} more hydrogen bonds \mathbf{R} hydrocarbons
accept produces / gives / results in for 'makes' in mp 2 and mp3 2 (makes) more reduced NAD ;
3 makes more ATP per, gram / molecule / mole / unit mass : A releases / results in / gives, more energy per, g / etc.
4 more, aerobic respiration / electron transport chain (ETC) / oxidative phosphorylation / chemiosmosis ; A higher rate of for 'more'
[max 2]
[Total: 9]

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

1 (a) ATP and NAD both play important roles in respiration. Both compounds are nucleotides:

Fig. 1.1 represents the molecular structures of AIP and NAD.

ATP

NAD

Fig. 1.1
Using Fig. 1.1, compare the structures of ATP and NAD.

 The ribose 8uggr is booded to true phoginate groups.

 quoup are linked together. \qquad
\qquad
\qquad
\qquad

01
Mark scheme
(a) $\quad \begin{aligned} & \text { both have ribose (sugars) ; R ribulose } \\ & \text { ATP }\end{aligned}$

ATP has 1, ribose / pentose / sugar, NAD has 2 ; I ref. to additional hexose
both have, adenine / purine (base) ; I adenosine
NAD has, nicotinamide / pyrimidine (base) :
ATP has 3 phosphates, NAD has 2 ;
[max 3]
(b) accept synthesise / produce / convert to, for 'make' for all mp make (named), protein / polypeptide / peptides; A protein synthesis / translation
make (named), disaccharide / oligosaccharide / polysaccharide
glycogen ; R nonmammalian examples such as starch or cellulose make (named), triglycerides / lipids / phospholipids / steroids /
cholesterol:
A glycogenesis
make, nucleotide / polynucleotide / nucleic acid / DNA / RNA ;
A transcription / DNA replication
AVP ; e.g. named example of, polymerisation / condensation

1(c)

1(e)

A phosphorylation example

| (c) | $\frac{\text { substrate-linked / substrate-level, phosphorylation ; }}{\text { I condensation reaction }}$ |
| :--- | :--- |\quad [1]

(d) hydrogen, carrier / acceptor; A gets reduced or gains $\mathrm{H} / \mathrm{H}^{+}$and hydrogen, car
electrons
I donates $\mathbf{R} \mathrm{H}_{2}$ / hydrogen molecules
(acts as a) coenzyme ; A enables dehydrogenases to work
(acts as a) coenzyme ; A enables dehydrogenases to work
ref. to glycolysis / respiration in anaerobic conditions ; A anaerobic
ref. to glycolysis / respiration in anaerobic conditions; A anaerobic
respiration
I aerobic
[max 2]
(e) 'more' needed once plus implied for second mp

1 more, C-H bonds / hydrogen(s) / reduced; I C-C bonds \mathbf{R} more hydrogen bonds \mathbf{R} hydrocarbons
accept produces / gives / results in for 'makes' in mp 2 and mp3 2 (makes) more reduced NAD;
3 makes more ATP per, gram / molecule / mole / unit mass ; A releases / results in / gives, more energy per, g/etc.
4 more, aerobic respiration / electron transport chain (ETC) / oxidative phosphorylation / chemiosmosis ; A higher rate of for 'more'
[max 2]
[Total: 9]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select

www.megalecture.com

(b) ATP provides an immediate energy source for metabolic processes such as anabolic reactions.

State two examples of anabolic reactions in a mammal that require ATP as an energy source.
1 .-Active trespent Ereathe phosphate formation
Active tronspert of minerals and tion into the cell.

(c) Name the type of chemical reaction by which ATP is made during the Krebs cycle.
..Chomingmosis \qquad [1]
(d) Outine the roles of NAD in the cytoplasm of a cell.
 of reduced NAD, the tupdreqn is uoed to provide enerqy for ATP supthose NAD is used to sypthesize dopamine \qquad
\qquad
\qquad
(e) Carbohydrates and lipids are used as respiratory substrates.

Table 1.1 shows the energy values of carbohydrates and lipids.
Table 1.1

resplratory substrate	energy value $/ \mathrm{kJ} \mathrm{g}^{-1}$
carbohydrate	15.8
lipid	39.4

Explain why lipids have a higher energy value than carbohydrates.
 Cantann more carben and hy drogen per molecule than corbohy. drates.
 synthesized.
\qquad

01	Mark scheme
(a)	both have ribose (sugars) ; R ribulose ATP has 1 , ribose / pentose / sugar, NAD has 2 ; I ref. to additional hexose both have, adenine / purine (base) ; I adenosine NAD has, nicotinamide / pyrimidine (base) ; ATP has 3 phosphates, NAD has 2 ; [max 3]
(b)	accept synthesise / produce / convert to, for 'make' for all mp make (named), protein / polypeptide / peptides; A protein synthesis / translation make (named), disaccharide / oligosaccharide / polysaccharide / glycogen ; R nonmammalian examples such as starch or cellulose make (named), triglycerides / lipids / phospholipids / steroids / cholesterol; A glycogenesis make, nucleotide / polynucleotide / nucleic acid / DNA / RNA ; A transcription / DNA replication AVP ; e.g. named example of, polymerisation / condensation A phosphorylation example [max 3]
(c)	substrate-linked / substrate-level, phosphorylation ; I condensation reaction
(d)	hydrogen, carrier / acceptor ; A gets reduced or gains $\mathrm{H} / \mathrm{H}^{+}$and electrons I donates $\mathbf{R} \mathrm{H}_{2}$ / hydrogen molecules (acts as a) coenzyme ; A enables dehydrogenases to work ref. to glycolysis / respiration in anaerobic conditions; A anaerobic respiration I aerobic [max 2]
(e)	'more' needed once plus implied for second mp 1 more, C-H bonds / hydrogen(s) / reduced ; I C-C bonds \mathbf{R} more hydrogen bonds \mathbf{R} hydrocarbons accept produces / gives / results in for 'makes' in mp 2 and mp3 2 (makes) more reduced NAD ; 3 makes more ATP per, gram / molecule / mole / unit mass ; A releases / results in / gives, more energy per, g / etc. 4 more, aerobic respiration / electron transport chain (ETC) / oxidative phosphorylation / chemiosmosis ; A higher rate of for 'more'

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

(a) ATP and NAD both play important roles in respiration. Both compounds are nucleotides.

Fig. 1.1 represents the molecular,structures of ATP and NAD.

NAD

Fig. 1.1
Using Fig. 1.1, compare the structures of ATP and NAD.
ATP, has ribose sugar and Aderine, Nitrogen Containing base is attrached to corcon number 5 and thice phosphate \qquad grous are attached to carbon number one, NAD is a co-enzyme have phosphadiater. ..bond and have kwo different types monowes of vilhogen containing base and one ...phosphate group.
路

$$
-1-2-1-2-1
$$

\qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select

www.megalecture.com

(b) ATP provides an immediate energy source for melabolic processes such as anabolic reactions.
State two examples of anabolic reactions in a mammal that require ATP as an energy squrce.
1nuscte..........ontraction. \qquad
2
.......reabsomplion iln kidneys
(c) Name the type of chemical reaction by which ATP la made during the Krebs cycle.
light indeperident reaction. \qquad [1]
(d) Outline the roles of NAD in the cytoplasm of a cell.
.NAD is co enzyme

herdragenation t.................. reducent...NAD.
\qquad [2]
(c) Carbohydratoo and lipide are uood as reapiratory substratoa.

Tahle 1.1 shows thin energy values of carholyydrates and lipids
Table 1.1

respiratory substrate	energy value $/ \mathbf{k J ~ g}{ }^{-1}$
carbohydrate	15.8
lipid	39.4

Explain why lipids have a higher energy value than carbohydrates.
Ippls hase higher hydrocarbon bond tham .and buace xas . carbolyrales
more bonds are boken derning hadro lysis........
\&

Mom \qquad

Mark scheme

01 Mark sche

(a) $\begin{aligned} & \text { both have ribose (sugars) ; R ribulose } \\ & \text { ATP has 1 ribose / pentose }\end{aligned}$

ATP has 1, ribose / pentose / sugar, NAD has 2 ; I ref. to additional hexose
both have, adenine / purine (base) ; I adenosine
NAD has, nicotinamide / pyrimidine (base) ,
ATP has 3 phosphates, NAD has 2 ;
[max 3]
accept synthesise / produce / convert to, for 'make' for all mp
make (named), protein / polypeptide / peptides ; A protein synthesis / translation
make (named), disaccharide / oligosaccharide / polysaccharide /
glycogen ; R nonmammalian examples such as starch or cellulose make (named), triglycerides / lipids / phospholipids / steroids / cholesterol:
A glycogenesis
make, nucleotide / polynucleotide / nucleic acid / DNA / RNA ;
A transcription / DNA replication
AVP ; e.g. named example of, polymerisation / condensation
A phosphorylation example A phosphorylation example
[max 3]

(c)	substrate-linked / substrate-level, phosphorylation ;
I condensation reaction	

(d) hydrogen, carrier / acceptor; A gets reduced or gains $\mathrm{H} / \mathrm{H}^{+}$and electrons
I donates $\mathbf{R} \mathrm{H}_{2}$ / hydrogen molecules
(acts as a) coenzyme ; A enables dehydrogenases to work
ref. to glycolysis / respiration in anaerobic conditions ; A anaerobic respiration
'more' needed once plus implied for second mp
1 more, C-H bonds / hydrogen(s) / reduced; I C-C bonds \mathbf{R} more hydrogen bonds \mathbf{R} hydrocarbons
accept produces / gives / results in for 'makes' in mp 2 and mp3 2 (makes) more reduced NAD ;
3 makes more ATP per, gram / molecule / mole / unit mass : A releases / results in / gives, more energy per, g / etc.
4 more, aerobic respiration / electron transport chain (ETC) oxidative phosphorylation / chemiosmosis ; A higher rate of for 'more'
[max 2]
[Total: 9]

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 4 (May/June 2016), Question 2 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

www.youtube.com/megalecture

www.megalecture.com

2 The cuncentration of canbun diưxide in the atmosphere and the light intensity often limit the rate of photosynthesis.
(a). Explain what is meant by a limititing factorin relation to. photosynthesis.

 \qquad
(b) Investigations were carried out in Florida, USA, into the effect of different concentrations of atrusspleric carton dioxide and of.light intensity on the rate of photosynthesis of scybean plants.

Plants were grown from seed in outdoor, computer-controlled growth chambers at different concentrations of carbon dioxide. The upper parts of the chambers were transparent so that the plants received natural sunlight.

After the seedlings emerged, the air in the soil was separated from the air around. the leaves by a gas-tight seal in each chamber.
Suggest why the air in the sola and the air around the leaves of the plants were separated.

 \qquad
 \qquad
(c) In one investigation, two sets of plants, A and B, were grown from seed at different concentrations of carbon dioxide:

- A -normal atmospheric concentration of carbon dioxide (0.033%)
- $\mathbf{B}-$ normal atmospherin mnncentriation of carbon dioxide $\times 2(0.066 \%)$

Then, keeping each set of plants in its particular concentration of carbon dioxide, measurements were made of their rates of photosynthesis at different light intensities.

The results are shown In Fig. 2.1 on page 5.

02	Mark scheme
(a)	at lowest value / in shortest supply ; I insufficient supply / not enough (the) one factor of several that affects rate; \mathbf{A} one factor of several prevents increase in rate
(b)	to keep out unwanted CO_{2} (in air around leaves) ; A to stop CO_{2} increasing / entering (upper chamber) ref. to respiration of soil organisms ; A respiration of bacteria / fungi / seeds ref. to respiration of plant roots ; [max 2]
(c) (i)	I ref. to set B throughout I time references at low(er) light intensity / light intensity up to a figure in range 6-7au 1 rate increases as light intensity increases ; 2 light intensity is (main) limiting factor ; mp1 and mp 2 need to be in correct context at high light intensity / light intensity above a figure in range 6-7 au 3 rate, levels off / reaches plateau / remains constant ; A rate unaffected (by light intensity) 4 another (named) factor / not light intensity, is limiting ; A CO ${ }_{2}$ concentration / temperature mp3 and mp4 need to be in correct context [max 3]
(c)(ii)	more CO_{2} available in $\mathbf{B} /$ less CO_{2} in \mathbf{A}; $\mathbf{A} \mathrm{CO}_{2}$ concentration in \mathbf{B} is double that of \mathbf{A} ref. to fixation / Calvin cycle / light independent reactions ; A description, e.g. CO_{2} combines with RuBP CO_{2} concentration is limiting factor in set \mathbf{A}; $\mathbf{A} \mathrm{CO}_{2}$ concentration is limiting at a higher light intensity in \mathbf{B} [max 2]
(d)	accept ora throughout 1 D, adapted to high CO_{2} / can use more CO_{2} (per unit leaf area) ; A plants in D have, adjusted / accommodated, to high CO_{2} 2 D have more, chloroplasts / chlorophyll ; 3 D have more, rubisco / RuBP ; 4 D have more stomata; 5 D have thinner leaves; 6 AVP ; e.g. ref. to diffusion of $\mathrm{CO}_{2} \quad$ [max 4] [Total: 13]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Fig. 2.1
With reference to Fig. 2.1:
(i) describe and explain, in terms of limiting factors, the results from the plants in set \mathbf{A}.

 \qquad

(ii) explain the difference between the results of set \mathbf{A} and set B at high light intensities.

 ...sice moro CO_{2} for tight phapendant roachom (thes cal inn.......gyde.)...in the shoma.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(d) In a second investigation, two sets of plants, \mathbf{C} and \mathbf{D}, wore grown from scod, as bofore, in different carbon dioxide concentrations:

- \mathbf{C}-normal atmospheric concentration of carbon dioxide (0.033%)
- D - normal atmospheric concentration of carbon dioxide $\times 2(0.066 \%)$.

When the plants matured, conditions in the growth chambers were changed to investigate the rale of ploplusynithesis of each set of plants in different concentrations of carbon dioxdde.

The roeulte aro ehown in Fig. 2.2.

mean rate of photosynthesis per unit area of leaf/arbitrary units

Fig. 2.2

Your Mark

$$
\text { 2(a) } \square
$$

02 Mark scheme

(a) \quad| at lowest value / in shortest supply ; I insufficient supply / not |
| :--- |
| enough |
| (the) one factor of several that affects rate; A one factor of |

(the) one factor of several that affects rate; A one factor of several prevents increase in rate

(b)	to keep out unwanted CO_{2} (in air around leaves) ;
	\mathbf{A} to stop CO_{2} increasing / entering (upper chamber)

ref. to respiration of soil organisms ; A respiration of bacteria / fungi / seeds
ref. to respiration of plant roots ;
[max 2]

(c)(i)

I ref. to set \boldsymbol{B} throughout I time references
at low(er) light intensity / light intensity up to a figure in range 6-7au
1 rate increases as light intensity increases;
2 light intensity is (main) limiting factor ;
mp1 and mp 2 need to be in correct context
at high light intensity / light intensity above a figure in range 6-7 au 3 rate, levels off / reaches plateau / remains constant
A rate unaffected (by light intensity)
4 another (named) factor / not light intensity, is limiting ;
A CO ${ }_{2}$ concentration / temperature
mp3 and mp4 need to be in correct context
c)(ii) more CO_{2} available in $\mathbf{B} /$ less CO_{2} in \mathbf{A}
$\mathbf{A} \mathrm{CO}_{2}$ concentration in \mathbf{B} is double that of \mathbf{A}
ref. to fixation / Calvin cycle / light independent reactions:
A description, e.g. CO_{2} combines with RuBP
CO_{2} concentration is limiting factor in set \mathbf{A};
$\mathbf{A} \mathrm{CO}_{2}$ concentration is limiting at a higher light intensity in \mathbf{B}

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Guggest explanations for the higher rate of photosynthesis: per unit area of leaf shown by the plants in set \mathbf{D} compared with those in set \mathbf{C}.

 \qquad

 …..

fretrof

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

2 The concentration of carbon dioxide in the atrnosphere and the light intensity often limit the rate of photosynthesis.
(a) Explain what is meant by a limiting factor in relation to photosynthesis.
...............imiting factor means i.....in... a series of r................
....i.s limited ...ky the... Slowent in this e. exenction.
....forinstanc. if ue increaned. the Caxbon dioxide...........ncentratm the ente of photosifntlesis incmeme till it reaches a plateau where. other..........tors such an light in tensity is \qquad p. affentingere... other...facion....nch co onvide is no long ralimiting
(b) Irvestigations were carried out in Florida, USA, into the effect of different concentications of atmospheric carbon dioxide and of light intensity on the rate of photosynthesls of soybean plants.

Plants were 'grown from seed in outdoor, computer-controlled growth chambers at different concentrations of carhnn diovide/The upper parts of the chamhers were transparent so that the plants received natural sumlighty.
Atter the seedlings emerged, the air in the soil was separated from the air around the leaves by a gas-tight seal in each chamber/
Suggest why the air in the soil and the air around the leaves of the plants were separated
air in the soil contained greates amonnt
\rightarrow as waste of pholosinte
........ of ougmson wast os will nat be taken up..............
.....by..............eavs of the plant so it doennt
...enfect the exproinoncoun \qquad

(c) In one investigation, two sets of plants, A and B, were grown from seed at different concentrations of carbon dioxide:

- $\mathrm{A}-$ normal atmospheric concentration of carbon dioxide (0.033%)
- B - normal atrnospheric concentratlon of carbon diuxide $\times 2$ (0.006%).

Then, keeping cach oct of planto in its partioular conoentration of oarbon dioxido, measurements were made of their rates of photosynthesis at different light intensities.

The results are shown in Fig. 2.1 on page 5.

a)	02	Mark scheme
	(a)	at lowest value / in shortest supply ; I insufficient supply / not enough (the) one factor of several that affects rate ; A one factor of several prevents increase in rate
2(b)	(b)	to keep out unwanted CO_{2} (in air around leaves) ; A to stop CO_{2} increasing / entering (upper chamber) ref. to respiration of soil organisms ; A respiration of bacteria / fungi / seeds ref. to respiration of plant roots ; [max 2]
2(c)(i)	(c)(i)	\boldsymbol{I} ref. to set \boldsymbol{B} throughout I time references at low(er) light intensity / light intensity up to a figure in range 6-7 au 1 rate increases as light intensity increases ; 2 light intensity is (main) limiting factor ; mp1 and mp 2 need to be in correct context at high light intensity / light intensity above a figure in range 6-7 au

at high light intensity / light intensity above a figure in range 6-7 au 3 rate, levels off / reaches plateau / remains constant ;
A rate unaffected (by light intensity)
4 another (named) factor / not light intensity, is limiting ;
A CO 2 concentration / temperature
mp3 and mp4 need to be in correct context
more CO_{2} available in $\mathbf{B} /$ less CO_{2} in \mathbf{A};
$\mathbf{A} \mathrm{CO}_{2}$ concentration in \mathbf{B} is double that of \mathbf{A}
ref. to fixation / Calvin cycle / light independent reactions ;
A description, e.g. CO_{2} combines with RuBP
CO_{2} concentration is limiting factor in set \mathbf{A}
$\mathbf{A} \mathrm{CO}_{2}$ concentration is limiting at a higher light intensity in \mathbf{B}
[max 2]
(d) accept ora throughout

1 D , adapted to high CO_{2} / can use more CO_{2} (per unit leaf area)
A plants in D have, adjusted / accommodated, to high CO_{2}
2 D have more, chloroplasts / chlorophyll
3 D have more, rubisco / RuBP
4 D have more stomata;
5 D have thinner leaves;
6 AVP ; e.g. ref. to diffusion of CO_{2}

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

Fig. 2.1
With reference to. Fig. 2.1
(i) describe and explain, in terms of limiting: factors, the results from the plants in se (A)
-As...the...light...intensity...increanen.... the mean....rate. of
photosynthesis per unit grea of leaf increapea....................
O....arbitany maits...till...2, arbituany...snits at... Light: \qquad
.. intensity of 7 arbitary units beyond that it becamea....
plateau till lionaritany units at 2abitary unit.
As usp fill \exists arbitary units light was the limiting....
factor in the experment, 7 arbitany units on ward
bill light intensity of 10 arbituary unit, Concentration of ${ }^{[3]}$ exparbondioxide became the limiting faclor, not the light infiknity.
(ii) explan the difierence between the resuits of set A and set B at high light intensities.

It undergo more photosyntfesis due to presence...... of more Carbon dioxide Hhan A. It aboorbs. hight bettes than set A.

	02	Mark scheme
	(a)	at lowest value / in shortest supply ; I insufficient supply / not enough (the) one factor of several that affects rate; \mathbf{A} one factor of several prevents increase in rate
2(c)(i)	(b)	to keep out unwanted CO_{2} (in air around leaves) ; A to stop CO_{2} increasing / entering (upper chamber) ref. to respiration of soil organisms ; A respiration of bacteria / fungi/ seeds ref. to respiration of plant roots ; [max 2]
	(c) (i)	I ref. to set B throughout I time references at low(er) light intensity / light intensity up to a figure in range 6-7au 1 rate increases as light intensity increases ; 2 light intensity is (main) limiting factor ; mp1 and mp 2 need to be in correct context at high light intensity / light intensity above a figure in range 6-7 au 3 rate, levels off / reaches plateau / remains constant ; A rate unaffected (by light intensity) 4 another (named) factor / not light intensity, is limiting ; A CO 2 concentration / temperature mp3 and mp4 need to be in correct context [max 3]
2(c)(ii)	(c)(ii)	more CO_{2} available in $\mathbf{B} /$ less CO_{2} in \mathbf{A}; $\mathbf{A} \mathrm{CO}_{2}$ concentration in \mathbf{B} is double that of \mathbf{A} ref. to fixation / Calvin cycle / light independent reactions ; A description, e.g. CO_{2} combines with RuBP CO_{2} concentration is limiting factor in set \mathbf{A}; $\mathbf{A} \mathrm{CO}_{2}$ concentration is limiting at a higher light intensity in \mathbf{B} [max 2]
2(d)	(d)	accept ora throughout 1 D , adapted to high CO_{2} / can use more CO_{2} (per unit leaf area) ; A plants in D have, adjusted / accommodated, to high CO_{2} 2 D have more, chloroplasts / chlorophyll ; 3 D have more, rubisco / RuBP ; 4 D have more stomata ; 5 D have thinner leaves ; 6 AVP ; e.g. ref. to diffusion of $\mathrm{CO}_{2} \quad$ [max 4] [Total: 13]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select

www.megalecture.com

(d) In a second investigation, two sets of plants, \mathbf{C} and D, were grown from seed, as beforc, in different carbon dioxide concentrations:

- C-normal atmospheric concentration of carbon dioxide (0.033\%)
- D - normal atmospheric concentration of carbon dioxide $\times 2(0.066 \%)$.

When the plants matured, conditions in the growth chambers were changed to investigate the rate of photosynthesis of each set of plants in different concentrattons of carbon dlloxide.

The resulte are shown in Гig.2.2.

02	Mark scheme
(a)	at lowest value / in shortest supply ; I insufficient supply / not enough (the) one factor of several that affects rate; \mathbf{A} one factor of several prevents increase in rate
(b)	to keep out unwanted CO_{2} (in air around leaves) ; A to stop CO_{2} increasing / entering (upper chamber) ref. to respiration of soil organisms ; A respiration of bacteria / fungi / seeds ref. to respiration of plant roots ; [max 2]
(c) (i)	I ref. to set B throughout I time references at low(er) light intensity / light intensity up to a figure in range 6-7au 1 rate increases as light intensity increases; 2 light intensity is (main) limiting factor ; mp1 and mp 2 need to be in correct context at high light intensity / light intensity above a figure in range 6-7 au 3 rate, levels off / reaches plateau / remains constant ; A rate unaffected (by light intensity) 4 another (named) factor / not light intensity, is limiting ; A CO ${ }_{2}$ concentration / temperature mp3 and mp4 need to be in correct context [max 3]
(c)(ii)	more CO_{2} available in $\mathbf{B} /$ less CO_{2} in \mathbf{A}; $\mathbf{A} \mathrm{CO}_{2}$ concentration in \mathbf{B} is double that of \mathbf{A} ref. to fixation / Calvin cycle / light independent reactions ; A description, e.g. CO_{2} combines with RuBP CO_{2} concentration is limiting factor in set \mathbf{A}; $\mathbf{A} \mathrm{CO}_{2}$ concentration is limiting at a higher light intensity in \mathbf{B} [max 2]
(d)	accept ora throughout 1 D , adapted to high CO_{2} / can use more CO_{2} (per unit leaf area) ; A plants in D have, adjusted / accommodated, to high CO_{2} 2 D have more, chloroplasts / chlorophyll ; 3 D have more, rubisco / RuBP ; 4 D have more stomata; 5 D have thinner leaves; 6 AVP ; e.g. ref. to diffusion of CO_{2} [max 4]

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

www.youtube.com/megalecture

www.megalecture.com

2. The concentration of carbun dioxide in the atmosphere and the light intensity often limit the raie of photosynthesis.
(a) Explain what is meant by a limiting factor in relation to photosynthesis.
.A...limiting factor is an envicoumental factor.... which in in sbort....supply.../scarcity......imits... the rate of \qquad photorynathesis. \qquad
\qquad
(b) Investigations were carried out in Florida, USA, into the effect of different concentrations of atmospheric carbon diloxide and of ilght intensily on the rate of photosynthesls of soybean plants.

Plants were grown from seed in outdoor, computer-controiled growth chambers at different concentrations of carbon dicxide. The upper parts of the chambers were transparent so that the plants received natural sunlight.

After the seedlings emerged, the air in the soil was separated from the air around the leaves by a gas-tight seal in each chamber.
Suggest why the air in the soil and the air around the leaves of the plants were separated. They have different..... concentrations... of.... $\mathrm{CO}_{2} \mathrm{so}$ they \qquad are separated...to avoid...coufusios: and make.........clear on...... .which..... consentration has coussed the mate of photosyntheris........
\qquad
\qquad
(c) In one investigation, two sets of plants, A and B, were grown from seed at different concentrations of carbon dioxide:

- A - normal atmospheric concentration of carbon dioxide (0:033\%)
- B-normal atmospherio concentration of carbon diowide $\times 2(0.000 \%)$.

Then, kooping each set of plants in its particular concentration of carbon dioxide, measurements were made of their rates of photosynthesis at different light intensities.

The results are shown in Fig. 2.1 on page 5.

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Fig. 2.1
With reference to Fig. 2.1:
(i) describe and explain, in terms of limiting factors, the results from the plants in set \mathbf{A}
.At low light internsity., CO_{2} concentration is not
the limiting fartoc, light intensity. is.... $S a$ as.... light
.intensity increases, the rate of photorynthesis also increases. Then, when light intensity is in arbitrary. units, a plateau is reached No. mater fow much
.light int... intensity increases, the rate of phatosyntheris remains constant. This is due to light intensity not being the limiting factor anymore, CO 2 is probably limition... I3.
(ii) explain the difference between the results of $\operatorname{set} \mathbf{A}$ and set \mathbf{B} at high light intensities.

At ... high light intenoities, . set B B has a higher rate of photosynthesis because the concentration of $C \mathrm{CO}_{2}$ is.... higher (twice os much) so it takes longer fur CO. concentindions to be limitiong in iset B.

2(a)	02	Mark scheme
	(a)	at lowest value / in shortest supply ; I insufficient supply / not enough (the) one factor of several that affects rate: A one factor of several prevents increase in rate
2(b)	(b)	to keep out unwanted CO_{2} (in air around leaves) ; A to stop CO_{2} increasing / entering (upper chamber) ref. to respiration of soil organisms ; A respiration of bacteria / fungi / seeds ref. to respiration of plant roots ;
2(c)(ii)	(c)(i)	I ref. to set \boldsymbol{B} throughout I time references at low(er) light intensity / light intensity up to a figure in range 6-7аи 1 rate increases as light intensity increases : 2 light intensity is (main) limiting factor ; mp1 and mp 2 need to be in correct context at high light intensity / light intensity above a figure in range 6-7 au 3 rate, levels off / reaches plateau / remains constant; A rate unaffected (by light intensity) 4 another (named) factor / not light intensity, is limiting ; $\mathrm{A} \mathrm{CO}_{2}$ concentration / temperature mp3 and mp4 need to be in correct context [max 3]
	(c)(ii)	more CO_{2} available in $\mathbf{B} /$ less CO_{2} in \mathbf{A}; $\mathbf{A} \mathrm{CO}_{2}$ concentration in \mathbf{B} is double that of \mathbf{A} ref. to fixation / Calvin cycle / light independent reactions ; A description, e.g. CO_{2} combines with RuBP CO_{2} concentration is limiting factor in set \mathbf{A}; A CO $\mathbf{C O}_{2}$ concentration is limiting at a higher light intensity in \mathbf{B} [max 2]
2(d)	(d)	accept ora throughout 1 D , adapted to high CO_{2} / can use more CO_{2} (per unit leaf area) ; A plants in D have, adjusted / accommodated, to high CO_{2} 2 D have more, chloroplasts / chlorophyll ; 3 D have more, rubisco / RuBP; 4 D have more stomata; 5 D have thinner leaves ; 6 AVP ; e.g. ref. to diffusion of $\mathrm{CO}_{2} \quad \begin{array}{r}{[\text { max 4] }} \\ \text { [Total: 13] }\end{array}$

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

(d) In a secund irvestiyatiun, two sets of plants, \mathbf{C} and \mathbf{D}, weie gruwn from seed, as before, in aifferent carbon dioxide concentrations:

- C- normal atmospheric concentration of carbon dioxide (0.033%)
- D - normal atmospheric concentration of carbon dioxide $\times 2(0.066 \%)$.

When the plants matured, conditions in the growth chambers were changed to investigate the rate of photosynthesis of each set of plants in difterent concentrations of carbon dioxide.

The results are shown in Fig. 2.2.
mean rate of
photosynthesis
photosynthesis
leaf/arbitrary units
concentration of carbon
dioxide/arbitrary units

Fig. 2.2

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Guggest explanations for the higher rate of photosynthesis per unit area of leaf.shown by the plants in set'D compared with those in set C.
..As seeds from plant c were used to carrying out photosynthesis at slightly mouser lendis of CO_{2} concentration.
 ..rate of photosynthesis also increases., , but iess steeply..... than in D.
.... Carban dioxide can't be fixed that fast by ...rubisco..... than in in.
....nght intensity might berimited for c.......thans \qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 4 (May/June 2016), Question 3 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

www.megalecture.com

3 Malaria is a serious and often fatal infectious disease caused by Plasmodium. Drugs such as chloroquine are widely used to decrease the risk of getting malaria and also to treat people who have become infected. However, in many parts of the world, Plasmodium populations have become resistant to chloroquine. .

Sequencing the genome of Plasmodium and the application of bioinformatics has provided several new targets for the development of anti-malarial drugs.
(a) (i) Define the term bioinformatics.
ne biologind data, sequentes of DNA sloned in . 2 computer speftrane bise 3 sthichnes of proteris sand be stoed:
\qquad . [2]
(ii) Outline how sequencing the genome of Plasmodium and the use of bioinformatics can suggest new targets for anti-malarial drugs.
te DNA sequence of Plasendimen cold be sloned an the.....
comater ast to find the proteinsthat it Syntesises mol ma $\mathrm{Ke}^{30} \mathrm{~V}_{\text {nodels on }}$ of orennines的 onfeco-ater cond man in blouk te actine sitie of te enzignes. made makis. its effect hirmus. Oc finding........ prenioush stared \& substraces thet hare te spe shape as the actine site. $3 D$ structues of the en ngen rede . [3] cald be dispersed on to comuter

www.megalecture.com

(b) In parts of the world where Plasmodium is resistant to chloroquine, one of the most effective anti-malarial drugs currently in use is artemisinin. Arternisinin works by binding to an enzyme in Plasmodium called PfATP6, acting as an inhibitor.
'A substance called curcumin, which has' long'been used as a spice and yellow food colouring in India and other-countries, is also known to actagainst-chloroquine-resistant Plasmodium A group of researchers predicted that curcumin acts by binding to the same enzyme as artemisinin.

In -order to test this hypothesis, and ito try: to find similar substances that might work even better than curcumin, the researchers used theoretical modelling to:
look at the chemical structures of various molecules with a similar structure to curcumin (curcuriin analogues)
generate a three-dimensionial model of the structure of the enzyme PiATP6 investigate whether each curcumin analogue could bind to-PfATP6. . .
The researchers predicted that several of the curcumin.analogues would bind more strongly than curcumin to PfATP6.
(i) Suggest advantages of using theoretical models in this research, rather than testing possible drugs in the laboratory.

 tine b try many different drugs antenssing less efficient.
Youcét...con minimise te mant.....................neched to ..be fessed.
(ii) Suggest why theoretical modelling cannot completely replace laboratory trials in the search for new drugs.

 97. it mishit hame sidle effects that.... me not shan an..... Da fe competes.

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

3 Malaria is a serious and often fatal infectious disease caused by Plasmodium. Drugs such as chloroquine are widely used to decrease the risk of getting malaria and also to treat people who have become infecfed. However, in many parts of the world, Plasmodium populations have become resistant to chloroquine,

Sequencing the genome of Plasmodium and the application of bioinformatics has provided several new targets for the development of anti-malarial drugs.
(a) (i) Define the term bioinformatics.
.....Then........oganizing........praces.sing, analysing. of
....biochemical.....in formation of on onganism.
.....intr........Camputer Syshenx. \qquad
\qquad
(ii) Outline how sequencing the genome of Plasmodium and the use of bioinformatics can suggest new targets for anti-malarial drugs.
.....g... the gener... That..... are nest pansible..........then

...Comparing. the genome.... of re.. resistence..... ptunnma..... Plasmailim with....the genome of of........ngulsc.... bivin. focmabiof.
 alleles are dishonguished.......and.....an An-ankpalcriat......... ...drug for the restistont bat.. [3] be veveloped.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) In parts of the world where Plasmodium is resistant to chloroquine, one of the most effective anti-malarial drugs currently in use is artemisinin. Artemisinin works by binding to an enzyme in Plasmodium called. PtATP6, acting as an inhibitor.

A substance called curcumin, which has long been used as a spice and yellow food colouring in India and other countries, is also known tọ act against chloroquine-resistant Plasmodium. A group of researchers predicted that curcumin acts by binding to the same enzyme as artemisinin.

In order to test this hypothesis, and to try to find similar substances that might work even better than curcumin, the researchers used theoretical modelling to:

- look at the chemical structures of various molecules with a similar structure to curcumin (curcumin.analogues)
- generate a three-dimensional model of the structure of the enzyme PfATP6
- investigate whether each curcumin analogue could bind to PtATP6.

The researchers-predicted that several of the curcumin analogues would bind more strongly than curcumin to PtATP6.
(i) Suggest advantages of using theoretical models in this research, rather than testing possible drugs in the laboratory.
...teshing....possibls... dugr.in the labaraturya.....different...... Strainar...of.......esistance....plarmadium... \qquad testing posssible drugs on the lapeoratiry may have. \qquad
 ...the lataocabary........sing theoretscol modelx....exes... is
 \qquad
(ii) Suggest why theoretical modelling cannot completely replace laboratory trials in the search for new drugs.
The effect of rew drugx on peraple lining arganmas
 If ony side effeck might shaw. Fo-test if alsp tho te....est and see the strength of orugs (whet whether they are effictivet or nol)

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

3 Malaria is a serious and often fatal infectious disease caused by Plasmodium. Drugs such as chloroquine are widely used to decrease the risk of getting malaria and also to treat people who have become infected. However, in many parts of the world, Plasmodlum populations have become resistant to chloroquine.

Sequencing the genome of Plasmodium and the application of bioinformatics has.provided several new targets for the development of anti-malarial drugs.
(a) (i) Define the term bioinformatics.

Ack...Alterina......nna..........nanglnay..........actors.........................
 ...of....a
\qquad
ii) Outline how sequencing the genome of Plasmodium and the use of bioinformatics can suggest new targets for anti-malarial drugs.
...sequencing........the ene.....enome...............plasmadinn...........
 \qquad
When..............Maspanita...............nking a.............................

 .. [3]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) In parts of the world where Plasmodium is resistant to chloroquine, one of the most effective anti-malarial drugs currently in use is artemisinin. Artemisinin works by binding to an enzyme in Plasmodium called PtATP6, acting as an inhibitor.

A substance called curcumin, which has long been used as a spice and yellow food colouring in India and other countries, is also known to act against chloroquine-resistant Plasmodium. A group of researchers predictod that curcumin acts by binding to the same enzyme as artemisinin.

In order to test this hypothesis, and to try to find similar substances that might work even better than curcumin, the researchers used theoretical modelling to:

- look at the chemical structures of various molecules with a similar structure to curcumin (curcumin analogues)
- generate a three-dimensional model of the structure of the enzyme PfATP6
- investigate whether each curcumin analogue could bind to PIATP6.

The researchers predicted that several of the curcumin analogues would bind more strongly than curcumin to PfATP6.
(i) Suggest advantages of using theoretical models in this research, rather than testing possible drugs in the laboratory.
 \qquad ... Menorenticast.........ndels.........nand.....dsduce.........nhich............

tro......extract.......the encure. \qquad
\qquad
(ii) Suggest why theoretical modelling cannot completely replace laboratory trials in the search for new drugs.
 ...morms......and that........................ns...................effects,

3(a)(i)	03	Mark scheme
	(a)(i)	database(s) ; computer (programs) / software ; analysis of, data / biological information / sequences ; A compare, genes / genomes [max 1]
3(a)(ii)	(a)(ii)	$\mathbf{1}$ identify / recognise, gene(s) ; A find where genes are 2 predict, primary structure / amino acid sequences, of proteins ; $\mathbf{3}$ predict 3D structure of proteins ; A tertiary 4 identify / predict, functions of proteins (from 3D structure) ; 5 ref. to drug to, bind with / block activity of / disrupt structure of, protein / enzyme ; A drug specific to protein I denature, protein / enzyme 6 drug prevents, transcription / expression, (of gene) ; I gene editing [max 3]
3(b)(i)	(b) (i)	cheaper ; A more economic(al) faster / can try many different drugs in a short period of time ; A time-saving can try out changes to, model / drug structure, to see if more effective ; no need for, laboratories / equipment ; I uses less labour (initially) no need for tests on, animals / humans ; A fewer ethical issues
3(b)(ii)	(b) (ii)	functionality / to test that drug, actually works / is effective ; A cannot assume predictions are correct I efficiency safety ; A ref. to clinical trials / side effects dosage ; A theoretical modelling will not give information on doses [max 2] [Total: 10]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 4 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

4 Maize is an important food crop that has been improved both by selective breeding and by genetic modification.
(a) Outline how selective breeding has been used to improve maize.

 Ajele bopevey-dienges

 \qquad

 \qquad

www.youtube.com/megalecture

(b) Fig. 4.1 shows part of a maize cob. The cob is made up of many individual seeds called kernels. Each kernel results from a separate fertilisation of a male and a female gamete. Some kernels are yellow and some are purple.

Fig. 4.1
Name the type of variation shown in Fig. 4.1. Suggest a genetic explanation for this pattern of variation in colour.
type of variation Phendagpr. rawsulion

\qquad
\qquad
\qquad
\qquad

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(c) Maize and other crops have been genetically modified since 1996 to produce the Bt toxin to kill insect pests.

Fig. 4.2 shows the area of Bt crops grown (plotted points) and the number of insect pest species in which resistance to Bt has been reported (bars).

Fig. 4.2

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(i) Describe and suggest an explanation for the relationship between the area of Bt crops grown and the number of resistant pest species.

 \qquad

(ii) Suggest one social advantage and one environmental advantage of growing this Bt maize.

 \qquad
 \qquad
 [Total: 13]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

4 Maize is an important food crop that has been improved both by selective breeding and by genetic modification.
(a) Outline how selective breeding has been used to improve maize.
 ..Milud of se....eds were se........sectr.d. \qquad
Ansficial selection; then thoseses......esitadion
 \qquad
 \qquad
...selechive aduratage our..........othes mai...e. popularion \qquad

....to keneed...... trage thes to pass. on te alluen......ts \qquad
...co:nent generationmopraued....maizen...nd \qquad harwesning...... Short....stemed....maiza.....cosb (en money......... [4] Nowastuys.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Fig. 4.1 shows part of a maize cob. The cob is made up of many individual seeds called kernels. Each kernel results from a separate fertilisation of a male and a female gamete. Some kernels are yellow and some are purple.

Fig. 4.1

Name the type of variation shown in Fig. 4.1. Suggest a genetic explanation for this pattern of variation in colour.
type of variation ...Disconhbaus..... Uariabich \qquad
explanation .ten-Each Pettil feribisation of eachkenel Separately makea them i..........epenclent of tach
 genes that se carried by males and famen femates gameter. The rand om fetsti............tisation is a
......rason...............such Uariction to cuppear.
\qquad
.... Also...independent assortmant of \& chromosomex............ [3] during fertilisation plays a role in fuch variation to appear.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

(c) Maize and other crops have been genetically modified since 1996 to produce the Bt toxin to kill insect pests.

Fig. 4.2 shows the area of Bt crops grown (plotted points) and the number of insect pest species in which resistance to Bt has been reported (bars).

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

(i) Describe and suggest an explanation for the relationship between the area of Bt crops grown and the number of resistant pest species.
As area of B................grown...increamea...ram 1996 till...

 \qquad
 13 millum bectorms...tilh.....6.........the numbes of... resistent \qquad

 agan becomen censtren from 200g rhi 2ol, at Species.
Increaring the Selection pressure pa....pustom....insecks \qquad ... [4] those insects.inth selective aducriciev. spyive only cos reproduce (ii) Suggest one soclal advantage and one environfuental advantage of growing this Bt maize.
social advantagenumber...nt........nait........maize ...pxoduckink....... increaies
environmental advantagenumber....of pestr....................................
 \qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

4 Maize is an important food crop that has been improved both by selective breeding and by genetic modification.
(a) Outine how selective breeding has been used to improve maize.
\qquad
of maize..
 \qquad
...be....... best..... adapled to the the environment \qquad

...yiel. will be gire and Sherter ones \qquad
\qquad
\qquad
\qquad

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Fig. 4.1 shows part of a maize cob. The cob is made up of many individual seeds called kernels. Each kernel results from a separate fertilisation of a male and a female gamete. Some kernels are yellow and some are purple.

Fig. 4.1
Name the type of variation shown in Fig. 4.1. Suggest a genetic explanation for this pattern of variation in colour.
type of variationdis...Continuous veriontion
explanation it.................anly........influeced............... gene
 \qquad different olleter of this gone has agreat effect........... on the type.
\qquad

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

(c) Maize and other crops have been genetically modified since 1996 to produce the Bt toxin to kill insect pests.

Fig. 4.2 shows the area of Bt crops grown (plotted points) and the number of insect pest species in which resistance to Bt has been reported (bars).

Fig. 4.2

Your Mark	04	Mark scheme
	(a)	1 best / desirable, plants crossed ; A cross-pollinated \mathbf{R} cross with other (maize) species 2 repeatedly / every generation ; 3 detail of cross-pollination ; e.g. ref. to male tassels and female silks 4 example of desirable characteristic ; A more kernels / big kernels / high yield / ref. to kernel colour / fast-growing / cold-tolerant 5 hybridisation / two inbred (named) lines crossed / F1 hybrids formed ; A description, e.g. cross two, homozygous parents / parents from two purebred lines 6 gives more, vigorous / uniform, plants ; A heterosis 7 ref. to dwarf maize / mutant alleles for gibberellin (synthesis) ;
4(b)	(b)	1 discontinuous ; max 2 for mp2-6 2 one gene / single locus / monogenic, inheritance ; A monohybrid 3 two alleles ; 4 dominant and recessive ; 5 1:1 ratio purple to yellow ; A 50\% purple, 50\% yellow 6 test cross / Aa \times aa; [max 3]
4(c)(i)	(c)(i)	1 as, Bt crops / area, increases the number of resistant, pests / species, increases ; A the more (the area of) Bt crops grown, the more (the) resistant species 2 figures quote ; (2 years, area with units once) 3 figures quote ; (2 years, no. resistant pest species) 4 mutation(s) (in pest species) ; 5 chance / random / spontaneous (mutations) ; 6 pests evolve resistance / natural selection for resistant pests ; 7 AVP ; e.g. plateau in resistance, 2002-2005 / 2009-2011 first 6 years / 1996-2001, no resistant species
4(c)(ii)	(c)(ii)	social increased yield / more food / cheaper food / AW ; environmental decreased insecticide use / few hazards to humans / Bt only targets pest species ; A no / less pesticide used R herbicide

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(i) Describe and suggest an explanation for the relationship between the area of Bt crops grown and the number of resistant pest species.
 \qquad discontinous variation as no nfermediate ...and as the years increase the more theresishant peresk.
....the are of Bt Crops grow........ mcnease

..... Ko.................entremes
\qquad
\qquad
(ii) Suggest one social advantage and one environmiental advantage of growing this Bt malze.
social advantagevanefy....of......................
environmental advantage \square Sumbiosis
\qquad

Q4 Mark scheme

(a) $\begin{aligned} & \text { best / desirable, plan } \\ & \text { other (maize) species }\end{aligned}$
 2 repeatedly / every generation
 3 detail of cross-pollination ; e.g. ref. to male tassels and female silks
 4 example of desirable characteristic ; A more kernels / big kernels /

 high yield / ref. to kernel colour / fast-growing / cold-tolerant5 hybridisation / two inbred (named) lines crossed / F1 hybrids formed A description, e.g. cross two, homozygous parents / parents from two purebred lines
6 gives more, vigorous / uniform, plants ; A heterosis
7 ref. to dwarf maize / mutant alleles for gibberellin (synthesis)

(b) 1 discontinuous ;
max 2 for mp2-6
2 one gene / single locus / monogenic, inheritance ; A monohybrid 3 two alleles ;
4 dominant and recessive
5 1:1 ratio purple to yellow; A 50\% purple, 50% yellow
6 test cross / Aa \times aa;
[max 3]
(c)(i) $\mathbf{1}$ as, Bt crops / area, increases the number of resistant, pests / species,
increases; A the more (the area of) Bt crops grown, the more (the) resistant species
2 figures quote ; (2 years, area with units once)
3 figures quote ; (2 years, no. resistant pest species)
4 mutation(s) (in pest species) ;
5 chance / random / spontaneous (mutations) ;
6 pests evolve resistance / natural selection for resistant pests ;
7 AVP ; e.g. plateau in resistance, 2002-2005 / 2009-2011 first 6 years / 1996-2001, no resistant species [max 4]
social
increased yield / more food / cheaper food / AW ;
environmental
decreased insecticide use / few hazards to humans / Bt only targets
pest
species ; A no / less pesticide used R herbicide

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 4 (May/June 2016), Question 5 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Fig. 5.1
The numbers of water voles are estimated to have fallen by 94% in the last century.
This is thought to be due to habitat fragmentation and also to extensive predation by mink, Neovison vison, shown in Fig. 5.2. Mink originated in North America but were brought to Great Britain for fur farming. Some escaped or were released into the wild, where their numbers rapidly increased.

Fig. 5.2
(a) Name and describe a method for estimating the abundance of water voles in a local area.

 uning harm ...thens. sunival....Ceg... Shrownen......

解 find, of voles recaptured

3/4 A mark is given for the name of the method
No detail of how the voles are trapped is given but there is a wealth of detail about the marking process.
The length of time that elapses before the second round of trapping earns a mark.
The formula provided finds the difference between the number of voles caught in the first and second samples whereas these two figures should be multiplied together on the top line of the calculation.

5(b) \square 2/2 The answer is overly brief, lacking a subject for the sentence, but we assume the answer refers to the object of the question (animal cells) so this gets a mark.
Although this is a negative feature, something animal cells don not have, it is considered mark-worthy because other cells of multicellular eukaryotes, plants and fungi, do both have cell walls (on all cells).

5(c)(i) \square 3/3 A mark is given for the idea that the alien species may be a predator of another native species.
8. Reduction in another species' abundance scores here.
9. The effect of the alien species in changing or destroying the habitat scores a mark.

5(c)(ii) \square 1/1 Contraceptive measures are credited on the mark scheme along with hunting the mink or using a disease agent specific to mink.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Both water voles and mink are classified as class Mammalia, phylum Chordata, kingdom Animalia.

Outline two features of the cells of members of the kingdom Animalia that distinguish them from the cells of other multicellular eukaryotes.

1hans silig \qquad
2.
..............Np..sell....mast
(c) (i) Discuss the reasoris why alien species should be controlled.

 balance in the food chain of the ecosystens
(ii) Suggest one way of controlling mink numbers in Great Britain.

 \qquad
(b) \square

5(c)(ii) \square

Examiner marks and comments

Mark Comment

3/4 A mark is given for the name of the method
No detail of how the voles are trapped is given but there is a wealth of detail about the marking process.
The length of time that elapses before the second round of trapping earns a mark.
The formula provided finds the difference between the number of voles caught in the first and second samples whereas these two figures should be multiplied together on the top line of the calculation.

2/2 The answer is overly brief, lacking a subject for the sentence, but we assume the answer refers to the object of the question (animal cells) so this gets a mark.
Although this is a negative feature, something animal cells don not have, it is considered mark-worthy because other cells of multicellular eukaryotes, plants and fungi, do both have cell walls (on all cells).

5(c)(i)

3/3 A mark is given for the idea that the alien species may be a predator of another native species.
8. Reduction in another species' abundance scores here.
9. The effect of the alien species in changing or destroying the habitat scores a mark.

1/1 Contraceptive measures are credited on the mark scheme along with hunting the mink or using a disease agent specific to mink.

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

$$
\text { Fig. } 5: 1
$$

The numbers of water voles are estimated to have fallen by 94% in the last century.
This is thought to be due to habitat fragmentation and also to extensive predation by mink, Neovison vison, shown in Fig. 5.2. Mink originated.in: North America but were brought to Great Britain for fur farming. Some escaped or were refeased into the wild, where their numbers rapidly inçreased.

Fig. 5.2
(a) Name and describe a method for estimating the abundance of water voles in a local area.
 GIll hater oles io that Mark-relese-cepsptwe bese. rethod becase it is 2 nubile zaimel. kan te, aree of the ...
 morked and conted. Ten trey ve relessed in itc. ild nnd.......
 the marked weter noles are rantred and te unmerked whater. woles zee conted Te atto of maked to dnmaked is essumed. p. be the same forthe whale ppatianis. so tet etio is thessee [4] is te stro of sisindly narkedspecuite wies to the lioning it restof wider voles

Your
Mark

5(a) \square

Examiner marks and comments

Mark Comment

1/4 The correct name for the technique scores a mark.
No details of capturing or marking are given.
The time that elapses until 'then' is not specified.

5(b) \square 2/2 'They' is taken to mean animal cells so this scores a mark. Absence of a cell wall is considered an identifying feature of animal cells. Not having large vacuoles is potentially a third mark (but the answer is only out of two), while not having chloroplasts is ignored as a neutral point.

5(c)(i) \square 2/3 Identification of alien species as possible competitors scores a mark.
This scores marking point 1 , that numbers of other species could decrease.
This is incorrect as in order to compete with others the alien species must eat the same food as a native species. However it was not a direct opposite of the mark point already given so was ignored.
This is the same marking point as 'causing their numbers to drop', already given on line 2.

1/1 This idea scores a mark.

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Both water voles and mink are classified as class Mammalia, phylum Chordata, kingdom Animalia.

Outline two features of the cells of members of the kingdom Animalia that distinguish them from the cells of other multicellular eukaryotes.
1 thy have cannoners...el Centrioles ad centriolers \qquad

2 ...they yes dońt hane cell malls., troge vawous or \qquad
...chlocoplast. [2]
(c) (i) Discuss the reasons why alien species should be controlled.

Berwse they compete for food ad habitet..ninh in innod lasd speries ansig.gteir numbers bo drop, Key misht..

 pirnts..grow on hildings .t.destry...them. Thy.dont........ h:tin the berd chrin. Ty.might feed mon an endrengereal. spesies uncontollably Gemis. it to got extinct [3]
(ii) Suggest one way of controlling mink numbers in Great Britain.

- Allomins pesple to numt hem, iegrlise huntios.......... miak. $\therefore \cdot$
 [1]

www.youtube.com/megalecture

Fig. 5.1
The numbers of water voles are estimated to have fallen by 94% in the last century.
This is thought to be due to habitat fragmentation and also to extensive predation by mink, Neovison vison, shown in Fig. 5.2. Mink originated in North:America but were brought to Great Britain for fur farming. Some escaped or were released into the wild, where their numbers rapidly increased.

Fig. 5.2
(a) Name and describe a method for estimating the abundance of water voles in a local area.

 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(b) Both water voles and mink are classified as class Mammalia, phylum Chordata, kingdom Animalia.

Outline two features of the cells of members of the kingdom Animalia that distinguish them from the cells of other multicellular eukaryotes.

1 ...Contain......ysesmmes. \qquad
\qquad
2. May ...have mi.....moyilli.
(c) (i) Discuss the reasons why alien species should be controlled.
..........They.....canxterminate.....athex....spostes......Will...affect..the.................
bin......odiversity (ecosystem)
\qquad
...........shains: \qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest one way of controlling mink numbers in Great Britain.
....By......releasinga.....predator....f...the....mink...
\qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 4 (May/June 2016), Question 6 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

6 The fruit fly, Drosophila melanogaster, has eyes, a striped abdomen and wings longer than its abdomen. This is called a 'wild-type' fly.

Mutation has resulted in many variations of these features.

Table 6.1 shows diagrams of a wild-type fly and three other flies, each of which shows one recessive mutation.

(a) Using appropriate symbols, complete the genetic diagram below.

$$
\begin{aligned}
& \text { symbols } \\
& E \rightarrow \text { eyes present } \\
& e \rightarrow \text { ges absent } \\
& A \rightarrow \text { stribed abdomen } \\
& a \rightarrow \text { blank abdomen }
\end{aligned}
$$

06	Mark scheme				
(a)	key to 4 chosen symbols ; A any two lettered pairs (e.g. E/e and A / a) identified I symbols for wing length no eyes and black abdomen must be lower case (e, a) with eyes and striped abdomen must be upper case (E, A) allow ecf to max 3 if error in symbols parents genotypes Eeaa \times eeAa; gametes Ea ea \times eA ea; A each gamete written twice F2 genotypes Eeaa eeaa EeAa eeAa ;				
(b)	cross with, homozygous recessive / black no-eyes, fly ; A double recessive / aaee (or own symbols) / organism showing recessive characters or phenotype				
(c)	observed number (O) expected number (nu) $O-E$ $(O-E)$ $(O-E) 2$ 2				
	86	83	3	9	0.11
	87	83	4	16	0.19
	81	83	-2	4	0.05
	78	83	-5	25	0.30
	332	332		$\chi^{2}=0$	

A fractions in last column A 3 s.f. in last column
(d) no significant deviation from expected / difference not significant ;

A (95\% probability that) difference is due to chance
A data is a good fit / match
A null hypothesis (no significant difference between O and E) \mathbf{R} comment on significance of results
\mathbf{R} the value is not significant
probability (of this deviation) is over $0.05 / \chi^{2}$ is less than 7.82 ; $\mathbf{A} \chi^{2}$ / results (of χ^{2} test), less than value at probability 0.05 ref. to critical value ; ecf reverse arguments if answer from 6(c)is over 7.82 ref. to independent assortment / AW ; [max 2] [max 2]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

(b) State how you would carry out a test cross.

Como so breed the chrasaphils.... showing the dominant \qquad
feature with a homozygous recessive oms
(c) A cross was carried out between a fly heterozygous for striped abdomen $\hat{1}$! and long wings and a fly with a black abdomen and short wings. aa II

The results are shown below in Table 6.2.

$$
\text { Anil } \times
$$

Table 6.2

offspring	number
striped abdomen lorig wing	86
black abdomen long wing	87
striped abdomen short wing	81
black abdomen short wing	78
total	332

A chl-squared test (x^{2}) was carried out on these data.
Complete Table 6.3 and calculate the value of χ^{2}.
Table 6.3

$$
x^{2}=\Sigma \frac{(O-E)^{2}}{E}
$$

Your
6(a)

A fractions in last column $\mathbf{A} 3$ s.f. in last column
(d) no significant deviation from expected / difference not significant:

A (95\% probability that) difference is due to chance
A data is a good fit / match
A null hypothesis (no significant difference between O and E) \mathbf{R} comment on significance of results
\mathbf{R} 'the value' is not significant
probability (of this deviation) is over $0.05 / \chi^{2}$ is less than 7.82 ; A χ^{2} / results (of χ^{2} test), less than value at probability 0.05 ref. to critical value ; ecf reverse arguments if answer from 6(c) is over 7.82 ref. to independent assortment / AW :
[max 2] Total: 10]
$\Sigma=$ sum of...

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
(d) Table 6.4 shows χ^{2} values.

Table 6.4							
degrees of freedom	probability						
	0.50	0.20	0.10	0.05	0.02	0.01	0.001
3	2.37	4.64	6.25	7.82	9.84	11.34	16.27

Using Table 6.4, explain what conclusions can be made about the results of the χ^{2} test.

 observed wumbers and expected mumbers is nat sigurilicont ...and anty due ta chanee \qquad

6(c)
\square

6(d) \square

06 Mark scheme

(a) key to 4 chosen symbols

A any two lettered pairs (e.g. E/e and A / a) identified I symbols for wing length
no eyes and black abdomen must be lower case (e, a)
with eyes and striped abdomen must be upper case (E, A)
allow ecf to max 3 if error in symbols
parents genotypes Eeaa \times eeAa gametes Ea ea \times eA ea; A
F2 genotypes Eeaa eeaa EeAa eeAa
b) cross with, homozygous recessive / black no-eyes, fly

A double recessive / aaee (or own symbols) / organism showing recessive characters or phenotype
6(b) \square

observed number (O)	expected number (E)	$\mathbf{O}-\mathbf{E}$	$(\mathbf{O}-\mathbf{E})$ $\mathbf{2}$	$(\mathbf{O}-\mathbf{E}) \mathbf{2}$ \mathbf{E}
86	83	3	9	0.11
87	83	4	16	0.19
81	83	-2	4	0.05
78	83	-5	25	0.30
332	332	$\because \chi^{2}=0.65 ;$		

A fractions in last column $\mathbf{A} 3$ s.f. in last column
(d) no significant deviation from expected / difference not significant :

A (95\% probability that) difference is due to chance
A data is a good fit / match
A null hypothesis (no significant difference between O and E)
\mathbf{R} comment on significance of results
\mathbf{R} the value is not significant
probability (of this deviation) is over $0.05 / \chi^{2}$ is less than 7.82 A χ^{2} / results (of χ^{2} test), less than value at probability 0.05
ref. to critical value ; ecf reverse arguments if answer from 6(c)is over 7.82 ref. to independent assortment / AW ; [max 2]

Total: 10]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select

06	Mark scheme				
(a)	key to 4 chosen symbols ; A any two lettered pairs (e.g. E/e and A/a) identified I symbols for wing length no eyes and black abdomen must be lower case (e, a) with eyes and striped abdomen must be upper case (E, A) allow ecf to max 3 if error in symbols parents genotypes Eeaa \times eeAa; gametes Ea ea \times eA ea; A each gamete written twice F2 genotypes Eeaa eeaa EeAa eeAa;				
(b)	cross with, homozygous recessive / black no-eyes, fly ; A double recessive / aaee (or own symbols) / organism showing recessive characters or phenotype				
(c)	observed number (O) expected number (E) $O-E$ $(O-E)$ $(O-E) 2$ E				
	86	83	3	9	0.11
	87	83	4	16	0.19
	81	83	-2	4	0.05
	78	83	-5	25	0.30
	332	332		$\chi^{2}=0$.	

A fractions in last column $\mathbf{A} 3$ s.f. in last column
(d) no significant deviation from expected / difference not significant:

A (95\% probability that) difference is due to chance
A data is a good fit / match
A null hypothesis (no significant difference between O and E) \mathbf{R} comment on significance of results
\mathbf{R} the value is not significant
probability (of this deviation) is over $0.05 / \chi^{2}$ is less than 7.82 A χ^{2} / results (of χ^{2} test), less than value at probability 0.05 ref. to critical value ; ecf reverse arguments if answer from 6(c)is over 7.82 ref. to independent assortment / AW ;
[max 2] Total: 10]

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

(b) State how you would carry out a test cross.

A test onss is camied out using kave beterozygaus species. \qquad
(c) A cross was carried out between a fly heterozygous for striped abdomen and long.wings and a fly with a black abdomen and short wings.

The results are shown below in Table 6.2.
1 Table 6.2

offspring	number
striped abdomen long wing	86
black abdomen long wing	87
striped abdomen short wing	81
black abdomen short wing	78
total	332

A chi-squared test $\left(\chi^{2}\right)$ was carried out on these data.
Complete Table 6.3 and calculate the value of χ^{2},
Table 6.3

observed number (0)	expected number (E)	O-E	$(\mathrm{O}-\mathrm{E})^{2}$	$\frac{(O-E)^{2}}{E}$
86's..........	9	0.11.......
87	83	4.	16.........	.0.19
818........	-2	4.	0.05
78	83	-5	25	0.30.......
. 332	. 332			

$$
x^{2}=\Sigma \frac{(O-E)^{2}}{E}
$$

$\Sigma=$ sum of... $0.11+0.19+0.05+0.30$

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com
(d) Table 6.4 shows χ^{2} values.

Table 6.4

degrees of freedom	probability						
	0.50	0.20	0.10	0.05	0.02	0.01	0.001
3	2.37	4.64	6.25	7.82	9.84	11.34	16.27

Using Table 6.4, explain what conclusions can be made about the results of the χ^{2} tẹst.
 \qquad
 \qquad
Siqnificant.: \qquad
\qquad

06	Mark scheme				
(a)	key to 4 chosen symbols ; A any two lettered pairs (e.g. E/e and A/a) identified I symbols for wing length no eyes and black abdomen must be lower case (e, a) with eyes and striped abdomen must be upper case (E, A) allow ecf to max 3 if error in symbols parents genotypes Eeaa \times eeAa; gametes Ea ea \times eA ea; A each gamete written twice F2 genotypes Eeaa eeaa EeAa eeAa;				
(b)	cross with, homozygous recessive / black no-eyes, fly ; A double recessive / aaee (or own symbols) / organism showing recessive characters or phenotype				
(c)	observed number (O) expected number (E) $O-E$ $(O-E)$ $(O-E) 2$ 2				
	86	83	3	9	0.11
	87	83	4	16	0.19
	81	83	-2	4	0.05
	78	83	-5	25	0.30
	332	332		$\chi^{2}=0$.	

A fractions in last column $\mathbf{A} 3$ s.f. in last column
(d) no significant deviation from expected / difference not significant ;

A (95\% probability that) difference is due to chance
A data is a good fit / match
A null hypothesis (no significant difference between O and E)
\mathbf{R} comment on significance of results
\mathbf{R} the value is not significant
probability (of this deviation) is over $0.05 / \chi^{2}$ is less than 7.82 A χ^{2} / results (of χ^{2} test), less than value at probability 0.05
ref. to critical value ; ecf reverse arguments if answer from 6(c)is over 7.82 ref. to independent assortment / AW ; [max 2]

Total: 10]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

The fruit fly, Drosophila melanogaster, has eyes, a striped abdomen and wings longer than its abdomen. This is called a 'wild-type' fly.

Mutation has resulted in many variations of these features.
Table 6.1 shows diagrams of a wild-type fly and three other flies, each of which shows one recessive mutation.

Table 6.1

(a) Using appropriate symbols, complete the genetic diagram below.

symbols $\ldots . .2$	doninat $E A$
Eofa	recessice. e a

EeAa recessice-e a
Eéaa \qquad
ee Aa \qquad
.Ee Aa \qquad
parental
phenotypes
phenotypes
parental
genotypes
with eyes X no eyes black abdomen striped abdomen
Eear eefa
gametes
offspring genotypes

Eeta, Eeaq, elAa, eeaa
offspring
with eyes
*. no eyes no eyes
black abdomen
with eyes striped abdomen striped abdomen

06	Mark scheme				
(a)	key to 4 chosen symbols ; A any two lettered pairs (e.g. E/e and A / a) identified I symbols for wing length no eyes and black abdomen must be lower case (e, a) with eyes and striped abdomen must be upper case (E, A) allow ecf to max 3 if error in symbols parents genotypes Eeaa \times eeAa; gametes Ea ea \times eA ea; A each gamete written twice F2 genotypes Eeaa eeaa EeAa eeAa ;				
(b)	cross with, homozygous recessive / black no-eyes, fly ; A double recessive / aaee (or own symbols) / organism showing recessive characters or phenotype				
(c)	$\left.\begin{array}{\|c\|c\|c\|c\|c\|}\hline \begin{array}{c}\text { observed } \\ \text { number (O) }\end{array} & \begin{array}{c}\text { expected } \\ \text { number (E) }\end{array} & O-E & (O-E) & (O-E) 2 \\ 2\end{array}\right] E$$E$ 86				
	86	83	3	9	0.11
	87	83	4	16	0.19
	81	83	-2	4	0.05
	78	83	-5	25	0.30
	332	332		$\chi^{2}=0$	

A fractions in last column A 3 s.f. in last column
(d) no significant deviation from expected / difference not significant:

A (95\% probability that) difference is due to chance
A data is a good fit / match
A null hypothesis (no significant difference between O and E) \mathbf{R} comment on significance of results
\mathbf{R} the value is not significant
probability (of this deviation) is over $0.05 / \chi^{2}$ is less than 7.82 ; A χ^{2} / results (of χ^{2} test), less than value at probability 0.05 ref. to critical value ; ecf reverse arguments if answer from 6(c)is over 7.82 ref. to independent assortment / AW ;
[max 2] [Total: 10]

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select

www.megalecture.com

(b) State how you would carry out a test cross.
\qquad b.
dibybrid crass.
(c) A cross was carried out between a fly heterozygous for striped abdomen and long wings and a fly with a black abdomen and short wings.
The results are shown.bélow in Table 6.2.
Table 6.2

offspring	number
striped abdomen long wing	86
black abdomen long wing	87
striped abdomen short wing	81
black abdomen short wing	78
total	332

A chi-squared test $\left(\chi^{2}\right)$ was carried out on these data.
Complete Table 6.3 and calculate the value of χ^{2}.
Table 6.3

observed number (O)	expected number (E)	O-E	$(\mathrm{O}-\mathrm{E})^{2}$	$\frac{(O-E)^{2}}{E}$	$\frac{4}{16}$		-
86	83	3	9	O.11.			
87	83	. 4	$\ldots 16$	0.19...			
8182.......-2......	4	0.05			
78	83	$\frac{-5}{-\quad}$	253.30			
332	332						

$$
x^{2}=\sum \frac{(O-E)^{2}}{E}
$$

$\Sigma=$ sum of...

A fractions in last column A 3 s.f. in last column
(d) no significant deviation from expected / difference not significant :

A (95\% probability that) difference is due to chance
A data is a good fit / match
A null hypothesis (no significant difference between O and E) \mathbf{R} comment on significance of results
\mathbf{R} 'the value' is not significant
probability (of this deviation) is over $0.05 / \chi^{2}$ is less than 7.82 ; A χ^{2} / results (of χ^{2} test), less than value at probability 0.05 ref. to critical value ; ecf reverse arguments if answer from 6(c)is over 7.82 ref. to independent assortment / AW ;
[max 2] Total: 10]

MEGA LECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

Select

Table 6.4

degrees of freedom	probability							
	0.50	0.20	0.10	0.05	0.02	0.01	0.001	
3	2.37	4.64	6.25	7.82	9.84	11.34	16.27	

Using Table 6.4, explain what conclusions can be made about the resuits of the χ^{2} test. to see if obsemed and expected values are Significant or no
there is significance betureenserved.....nd.......
...enprected..... value.
[Total: 10]

06	Mark scheme				
(a)	key to 4 chosen symbols; A any two lettered pairs (e.g. E/e and A/a) identified I symbols for wing length no eyes and black abdomen must be lower case (e, a) with eyes and striped abdomen must be upper case (E, A) allow ecf to max 3 if error in symbols parents genotypes Eeaa \times eeAa; gametes Ea ea $\times \mathrm{eA}$ ea; A each gamete written twice F2 genotypes Eeaa eeaa EeAa eeAa ;				
(b)	cross with, homozygous recessive / black no-eyes, fly ; A double recessive / aaee (or own symbols) / organism showing recessive characters or phenotype				
(c)	observed number (0)	expected number (E)	O-E	$\begin{gathered} (O-E) \\ 2 \end{gathered}$	$(O-E) 2$ E
	86	83	3	9	0.11
	87	83	4	16	0.19
	81	83	-2	4	0.05
	78	83	-5	25	0.30
	332	332		$\chi^{2}=0.6$	
	A fractions in last column $\mathbf{A} 3$ s.f. in last column [3]				
(d)	no significant deviation from expected / difference not significant ; A (95\% probability that) difference is due to chance A data is a good fit / match A null hypothesis (no significant difference between O and E) \mathbf{R} comment on significance of results \mathbf{R} 'the value' is not significant probability (of this deviation) is over $0.05 / \chi 2$ is less than 7.82 ; A χ^{2} / results (of χ^{2} test), less than value at probability 0.05 ref. to critical value ; ecf reverse arguments if answer from 6(c)is over 7.82 ref. to independent assortment / AW ;				

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 7 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online classes: Megalecture@gmail.com

www.youtube.com/megalecture

7 (a) An important function of control systems in mammals is homeostasis.

Explain what is meanant by the term homeostasis.

$$
\begin{aligned}
& \text {...Maint oining ...a strable nontixinal Kan...envix an wnent... if am } \\
& \text {.....argamism. inear....trinarit. vatue. }
\end{aligned}
$$

(b) Insulin plays a part in homeostasis. It affects muscle and liver cells to bring about a decrease in blood glucose concentration; particularly after a,meal.
(i) Insulin is composed of two polypeptides which are made in β cells in the pancreas. State precisely' where in β cells polypeptide molecules are synthesised.nibosomes...an roush indr.phesmis...reticulum.
(ii) Name the process by which insulin is secreted from β cells.
\qquad

Online Classes : Megalecture@gmail.com
 www.youtube.com/megalecture

www.megalecture.com

(iii) Describe the effects of insulin on muscle cells.
I.Insulin stimulates muscle cells to increase their uptake of glucose fromblood, and to inarease. Heir rate ol respiration using glucaxe as substrate. ...7. Imsulin ads stimulates musche cells to conver.
...n. lucox to.
..
(c) During periods of stress or extreme exercise more glucose needs to be released into the blood. The hormone adrenaline is released and binds to receptors on the cell surfaco membranes of liver cells.

Describe how the effect of adrenaline on liver cells results in an increase in blood glucose concentration.
A...Arenatine binds....tonreceftars...on.cell surfrace mmbraves afliver ells activating a G.pratein.. Gprotein octivato amembron boumd en ayme that converts $(40+1)$ ATP t. cydic Amp. cyclic Amp activates.... Kinase emz.zme.....
 that event wally activates glycogem phesphorytare.en ey he whrch catalyses break dow of glycogen to glucose. glucase Affoses ant \& livercells int He thand..... inoreasing blood glueore amesutration...
\qquad
... [5]

Online Classes : Megalecture@gmail.com
www.youtube.com/megalecture

7 (a) An important function of control systems in mammals is homeostasis.
Explain what is meant by the term homeostasis.
...10........ Mainhain \qquad body temperatore Constant \qquad
(b) Insulin plays a part in homeostasis. It affects muscle and liver cells to bring about a decrease in blood glucose concentration, particularly after a meal.
(i) Insulin is composed of two polypeptides which are made in β cells in the pancreas. State precisely where in β cells polypeptide molecules are synthesised.
\qquad pancreass) \qquad
(ii) Name the process by which insulin is secreted from β cells.
\qquad

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(iii) Describe the effects of insulin on'muscle cells.

$$
\begin{aligned}
& \text { Inselen bad to receptors ont the cell. } \\
& \text { Surface membrane receptars activate the } \\
& \text { gluase transpader protern to merge ulth } \\
& \text {.the cell so face membrane to alow } \\
& \text { glucase to evter to the cell }
\end{aligned}
$$

...i...
(c) During periods of stress or extreme exercise more glucose needs to be released into the blood. The hormone adrenalline is released and binds to receptors on the cell surface membranes of liver cells.

Describe how the effect of adrenaline on liver cells resuits in an increase in blood glucose concentration.
Alesratine bind th rexepler on the cells \qquad . Whech activate 6 s-protain and a 6 protem \qquad activate entyme to col. alde. ATP to cyctic. . .

 that activate glurose phosphrylase to break down glycogen bo glucuse \qquad
\qquad
\qquad
\qquad

Online classes: Megalecture@gmail.com

www.youtube.com/megalecture

7 (a) An important function of control systems in mammals is homeostasis.
Explain what is meant by the term homesostasis.
 \qquad
(b) Insulin plays a part in homeostasis. It affects muscle and liver cells to bring about a decrease in blood gluçose concentration, particularly after a mẹal.
(i) Insulin is composed of two polypeptides which are made in $\boldsymbol{\beta}$ cells in the pancreas. State precisely where in β cells polypeptide molecules are synthesised,
..... Islehs....of...... Angegerhans.
(ii) Name the process by which insulin is secreted from β cells.

Glucogeonestis. [1]

(c) accept stimulates / stimulated, for activates / activated throughout
1 (adrenaline) receptor shape change ;
2 G-proteins activated; A description of G protein releases (a) subunit

3 adenylyl cyclase activated; A adenyl(ate) cyclase
4 cyclic AMP made;
5 (cAMP is) second messenger ;
6 activates / phosphorylates, kinase
7 ref. to enzyme cascade / cascade of reactions ;
8 glycogenolysis / hydrolysis of glycogen, stimulated / AW A break down glycogen
9 AVP ; gluconeogenesis / ref. to glucose transport proteins A description / glucose from, amino acids / lipids A GLUT(2) channels / carriers

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture
 www.megalecture.com

(iii) Describe the effects of insulin on muscle cells.
.....When..... thers.....is...........doment.insrensc.....of......blood.....glueoss................
 \qquad

0.7	Mark scheme
(a)	maintaining a constant internal environment ; AW R external I body conditions
(b)(i)	ribosomes / rough endoplasmic reticulum / RER ; [1]
(b)(ii)	exocytosis ; [1]
(b)(iii)	causes glucose uptake / increases permeability to glucose ; adds transport proteins to cell (surface) membrane ; \mathbf{A} in sarcolemma A GLUT(4), proteins / channels / carriers more glucose respired / increase in respiration rate ; glucose converted to glycogen / glycogenesis ;
(c)	

1 (adrenaline) receptor shape change ;
2 G-proteins activated; A description of G protein releases (a) subunit

3 adenylyl cyclase activated; A adenyl(ate) cyclase
4 cyclic AMP made;
5 (cAMP is) second messenger ;
6 activates / phosphorylates, kinase
7 ref. to enzyme cascade / cascade of reactions ;
8 glycogenolysis / hydrolysis of glycogen, stimulated / AW A break down glycogen
9 AVP ; gluconeogenesis / ref. to glucose transport proteins A description / glucose from, amino acids / lipids A GLUT(2) channels / carriers

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 4 (May/June 2016), Question 8 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

8 WWW.megalecture.com

Fig. 8.1
Name the parts of the neuron labelled A, B, C and D.
A ... dendrites

cCell body.
Ddendram......... (aten)[4]
(b) Explain how the myelin sheath increases the speed of conduction of nerve impulses. Myelin she rath insulates Hhaxan. Na .a tron patentees - Car in ruyelimated regions actrom pat centrals ont: occur at nodes of Ramxier where myelin is absence, ..focal circuits between no de of romvirer makes. the impulse imp firm one no ode toamotler in what is called saltatory conduction. \qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

(c) Fig. 8.2 shows the changes in the membrane potential of a sensory neurone when the receptor cells are stimulated.

Fig. 8.2
Fig. 8.3 shows the strength of the stimuli applied to these receptor cells.

Fig. 8.3
With reference to Fig. 8.2 and Fig. 8.3, describe the relationship between the strength of the stimulus and the resulting action potential.
If the strength d stimulus is to low the the theresuald wont be readud ind action.ptantial isnst.gmenated... Increasing He string the of stimulus increases the frequency y fraction pratatiads Strong that stipends
 all option pt atiole.praduced had th sammell.d.... (2)

08	(a)
	A

Mark scheme
A - dendrite (s)
B - dendron / (sensory) axon
C - cell body (of neurone) / soma / centron ;
D - axon (membrane) ; A terminal axon
(b) myelin insulates (axon) ;
action potentials / depolarisation, only at nodes (of Ranvier) ;
local circuits set up between nodes ; I local circuits at nodes
action potentials / impulses, 'jump' from node to node or saltatory conduction
[max 2]

(c) only, stimulus / depolarisation / receptor potential / potential difference, that reaches threshold produces an action potential ; ora A -50mV for threshold \mathbf{A} generator for receptor
idea that the action potential is the same size no matter how strong the stimulus ;
ref. to all-or-nothing (law) ; I all-and-nothing
[max 2]
[Total: 8]

MEGA LECTURE

Online_Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(a) Fig. ठ.1 is a diagram of a sensory neurone and some receptor cells.

Fig. 8.1
Name the parts of the neurone labelled A, B, C and D.
A ...sencrites \qquad
B..axon.
c cell. bady
o geon
(b) Explain how the myelin sheath increases the speed of conduction of nerve impulses.
 \qquad
from noderf ranxier. han another...................saltatrmf...... Inovement. Ing speed of conduction so timen
.... It's impreamble \qquad

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

c) Fig. 8.2 shows the changes in the membrane potential of a sensory neurone when the receptor cells are stimulated.

Fig. 8.2
Fig. 8.3 shows the strength of the stimull applied to these receptor cells.

With reference to Fig. 8.2 and Fig. 8.3, describe the relationship between the strength of the stimulus and the resulting action potential.
 the strengths of stimulus increanes. Action potentiat Rappens at $+30 v$ - means
".at passed therebhold

..................each....minute inckronen.... \qquad ... [2]
[Total: 8]
ark scheme

- dendrite(s)

B - dendron / (sensory) axon
C - cell body (of neurone) / soma / centron ;
D - axon (membrane) ; A terminal axon
(b) myelin insulates (axon) ;
action potentials / depolarisation, only at nodes (of Ranvier) ;
local circuits set up between nodes ; I local circuits at nodes
action potentials / impulses, 'jump' from node to node or saltatory conduction
[max 2]

(c) only, stimulus / depolarisation / receptor potential / potential difference, that reaches threshold produces an action potential ; ora A -50mV for threshold \mathbf{A} generator for receptor
idea that the action potential is the same size no matter how strong the stimulus ;
ref. to all-or-nothing (law) ; I all-and-nothing

MEGA LECTURE

Online Classes : Megalecture@gmail.com
www.youtube.com/megalecture
wWWy. megalecture. Com onsory neurone and somie receptor cells.

Fig. 8.1
Name the parts of the neurone labelled A, B, C and D.
Adendrites
B Sensonyneurone
ccell.......body
Dmokor neurone
(b) Explain how the myelin sheath increases the speed of conduction of nerve impulses. ...action.....polential.........oncur....................at...... different
...dis orete
soch at rode of ranveir
 \qquad

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(c) Fig. 8.2 shows the changes in the membrane potential of a sensory neurone when the receptor cells are stimulated.

With reference to Fig. 8.2 and Fig. 8.3, describe the relationiship between the strength of the stimulus and the resulting action potential.
As the shongth of st......... sulus increase................ \qquad ..acficn......potential.......marease
 .reach threshold sa....... depolanization acconed \qquad at higher strength of stimulus, the polential.... difference reaches thres. hald, acton podentral onous [2]

Fig. 8.2
Fig. 8.3 shows the strength of the stimuli applied to these receptor cells.

Fig. 8.3

$\begin{gathered}\text { Your } \\ \text { Mark }\end{gathered}$ 8(a) \square
 $\substack{\text { Your } \\ \text { Mark } \\ \text { 8(a) } \\ \square}$
 $$
8(\mathrm{a}) \square
$$

O8	\|
(a)	A

Mark scheme

- dendrite(s) ;

B - dendron / (sensory) axon
C - cell body (of neurone) / soma / centron ;
D - axon (membrane) ; A terminal axon
(b) myelin insulates (axon) ;
action potentials / depolarisation, only at nodes (of Ranvier)
local circuits set up between nodes ; I local circuits at nodes
action potentials / impulses, 'jump' from node to node or saltatory conduction
[max 2]

(c) only, stimulus / depolarisation / receptor potential / potential difference, that reaches threshold produces an action potential ; ora A -50mV for threshold \mathbf{A} generator for receptor
idea that the action potential is the same size no matter how strong the stimulus ;
ref. to all-or-nothing (law) ; I all-and-nothing
[max 2]
[Total: 8]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 4 (May/June 2016), Question 9 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

Online Classes : Megalecture@gmail.com

 www.youtube.com/megalectureSelect page www.megalecture.com

9 (a) Outline how ATP is synthesised by oxidative phosphorylation.
(b). Describe respiration in yeast cells in anaerobic conditions.
(4) a) In oxidative phoipharglation, ATP is synthe sised
 occurs in He mitachondriad cristae Reduced NAD omod $\mathcal{F} A D$
 protecin ina serxies of electron tranpport chain in inner mistochondrial membrone L AA rediced WAD and FAD becomefree to Bind it hydrogen aggain. Hydroghenss split into a pratam.... and amelectrom - The electrom is passed' admen a serries of electram trams fort chain fram ligh enmgy. .ewel to lower
 Enersy releared by (ete the electron is used to actively pump pratams int. He intermembranse space cresting a ...onchntration gradiemt a,ccross ..th inner membrase Prations.
cancmatratian gractient by facilitated drffusiom -thrangh tha chanel pratein. Trese chommel prateins have the enz.yng ATP sythase attrached ta them that uses the chemical. patatiol eneryy of pratous passing ohrangh it to syuthesize ATP by convertins $A D P$ and P to ATP

\square
9(a)

Select
page
..... Hyphraggen eleatrans and protims then bind to oxyghing which acts ar linal electram accepter. reducing it to water. \qquad
b.) During amaacabic reapiration in yeast cells.y.anly --.glycolysis tokes place in tle gytaphasm. Elucose is ..phosphoriflated wsing 2 ATP malecules to produce heetose bi phos phate, which the breaks of own in into... 2 trisise phsphate molecules.: Triose phosphate is the delughongennted praducing . 2 reduced $N A B$ mbleceles, als. 4 ATP matecules are. producad by substrate leuvel phospharglation. Trias: phosplate is cannuerted to pryrun.ate, a a 3-...corbom compoumol. Pyruvate is then elecarbooxylated to produce ethanat ound carbon diraxide mantecule. ethamal accepts hydingon
 is mow free to hind to hydragen again soxhot glycalysis
 by En enzyyne colled ethanal dehydxagnonse Net 2 At molecules are mede. LinK reactiom, Krebs.cycle ammoxidotive phaspharybation dresn't ta Keplace

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture

 www.megalecture.com(a) Outline how ATP is synthesised by oxidative phosphorylation.
(b) Deṣcribe respiration.in yeast cells in in anaerobic conditions.
...

$$
\text { from red NAD } e \text { FAD are }
$$

Elestrons.....are....then...transporkedthe.....ats.........transpart. ehain
 \qquad

 \qquad
...............bskk....to...the.....matrix......, down...,A...sonsen,trontion......gnoudient, \qquad

.............pump.....rx....used...................nxyme.....ATP.....synthass.....ts...phisphphorylate

Pathery.s.s....

..........................ind...................make......water....This...is...the....last...ings.....af..
....................aerobic........aspitatron.

\square 9(a)

Mark scheme
accept proton / hydrogen ion / H^{+}/ H ion as equivalent
throughout
1 reduced, NAD / FAD ; A NADH / NADH2 / NADH + H+ for reduced NAD
2 passed to ETC
3 inner membrane / cristae ;
4 hydrogen released (from reduced, NAD / FAD) ; R H
5 split into electrons and protons; A released as electron and proton
6 electrons pass along, carriers / cytochromes ; A electrons pass along proteins of, ETC / carrier chain
7 energy released pumps protons into intermembrane space ;
8 proton gradient is set up ; A concentration gradient of protons is created \mathbf{A} full description
9 protons diffuse, (back) through membrane / down gradient ; A protons diffuse into matrix
10 ATP synthase / stalked particles / protein channels ; A ATP synthetase R ATPase
11 (ATP produced from) ADP and (inorganic) phosphate ; A context for 'final'
12 idea of oxygen as final electron acceptor ;
13 addition of proton (to oxygen) to form water / (oxygen) reduced to water :
(b) $\mathbf{1}$ pyruvate formed by glycolysis ;

2 reduced NAD formed by glycolysis ;
3 pyruvate decarboxylated/AW;
4 ethanal produced
5 pyruvate decarboxylase;
6 ethanal is, hydrogen acceptor / reduced ; A gains H or gains H^{+}and e^{-}
7 from / by, reduced NAD
8 ethanol formed;
9 ethanol / alcohol, dehydrogenase;
10 not reversible reaction ;
11 NAD, regenerated / can now accept hydrogen atoms :
A reduced NAD oxidised
12 so glycolysis can continue

MEGA LECTURE

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture

\qquad

09

Mark scheme
accept proton / hydrogen ion / $\mathrm{H}^{+} / \mathrm{H}$ ion as equivalent throughout
1 reduced, NAD / FAD ; A NADH / NADH2 / NADH + H+ for reduced NAD
2 passed to ETC
3 inner membrane / cristae;
4 hydrogen released (from reduced, NAD / FAD) ; R H ${ }_{2}$
5 split into electrons and protons; A released as electron and proton
6 electrons pass along, carriers / cytochromes; A electrons pass along proteins of, ETC / carrier chain
7 energy released pumps protons into intermembrane space
8 proton gradient is set up; A concentration gradient of protons is created \mathbf{A} full description
9 protons diffuse, (back) through membrane / down gradient : A protons diffuse into matrix
10 ATP synthase / stalked particles / protein channels ;
A ATP synthetase R ATPase
11 (ATP produced from) ADP and (inorganic) phosphate ; A context for 'final'
12 idea of oxygen as final electron acceptor :
13 addition of proton (to oxygen) to form water / (oxygen) reduced to water ;
(b) $\mathbf{1}$ pyruvate formed by glycolysis ;

2 reduced NAD formed by glycolysis ;
3 pyruvate decarboxylated / AW ;
4 ethanal produced
5 pyruvate decarboxylase;
6 ethanal is, hydrogen acceptor / reduced; A gains H or gains H^{+}and e^{-}
7 from / by, reduced NAD :
8 ethanol formed.
9 ethanol / alcohol, dehydrogenase ;
10 not reversible reaction ;
11 NAD, regenerated / can now accept hydrogen atoms
A reduced NAD oxidised
12 so glycolysis can continue

MEGA LECTURE

 www.youtube.com/megalectureSelect page

9 (a) Outline how ATP is synthesised by oxidative phosphorylation
(b) Describe respiration in yeast cells in aniaerobic conditions.
(9) Ias NADPLI NAD.H. loosee itr. H^{+}ions as
.......it reaches the Cristas.

- by using energy from ATP that has
-.- produced earlier from glycolysis, and was. krehr
… C. Cugcu, enengy pumpre it ion against these

\qquad the ntermemberane space of the mitrchondria: \qquad
\qquad As the concentantion of 4^{+}rons incerares,
- When Thay olfture coun theer concentration

-In memberene of cristac.
- foreeach 34^{+}passing through it, mene.AFP
..-) mole.cule is produced.
..............atso buatermineoki... datm....

09
(a)

Mark scheme
accept proton / hydrogen ion / $\mathrm{H}^{+} / \mathrm{H}$ ion as equivalent
throughout
1 reduced, NAD / FAD ; A NADH / NADH2 / NADH + H+ for reduced NAD
2 passed to ETC ;
3 inner membrane / cristae ;
4 hydrogen released (from reduced, NAD / FAD) ; R H2
5 split into electrons and protons; A released as electron and proton
6 electrons pass along, carriers / cytochromes; A electrons pass along proteins of, ETC / carrier chain
7 energy released pumps protons into intermembrane space ;
8 proton gradient is set up; A concentration gradient of protons is created \mathbf{A} full description
9 protons diffuse, (back) through membrane / down gradient; A protons diffuse into matrix
10 ATP synthase / stalked particles / protein channels ;
A ATP synthetase R ATPase
11 (ATP produced from) ADP and (inorganic) phosphate; A context for 'final'
12 idea of oxygen as final electron acceptor ;
13 addition of proton (to oxygen) to form water / (oxygen) reduced to water ;
(b) $\mathbf{1}$ pyruvate formed by glycolysis ;

2 reduced NAD formed by glycolysis ;
3 pyruvate decarboxylated / AW ;
4 ethanal produced;
5 pyruvate decarboxylase;
6 ethanal is, hydrogen acceptor / reduced; A gains H or gains H^{+}and e^{-}
7 from / by, reduced NAD ;
8 ethanol formed;
9 ethanol / alcohol, dehydrogenase ;
10 not reversible reaction ;
11 NAD, regenerated / can now accept hydrogen atoms ;
A reduced NAD oxidised
12 so glycolysis can continue

MEGA LECTURE

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture www.megalecture.com

(b) Becouse of congen ber of conygen during.

.........intr... 2 pifinvatscompoinds.....that...ack....ar......nnal. \qquad

........that won ceducen during ghengolysis.:

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

09

(a)

accept proton / hydrogen ion / $\mathrm{H}^{+} / \mathrm{H}$ ion as equivalent throughout
1 reduced, NAD / FAD ; A NADH / NADH2 / NADH + H+ for reduced NAD
2 passed to ETC
3 inner membrane / cristae;
4 hydrogen released (from reduced, NAD / FAD) ; R H2
5 split into electrons and protons; A released as electron and proton
6 electrons pass along, carriers / cytochromes; A electrons pass along proteins of, ETC / carrier chain
7 energy released pumps protons into intermembrane space ;
8 proton gradient is set up;A concentration gradient of protons is created \mathbf{A} full description
9 protons diffuse, (back) through membrane / down gradient ; A protons diffuse into matrix
10 ATP synthase / stalked particles / protein channels ; A ATP synthetase R ATPase
11 (ATP produced from) ADP and (inorganic) phosphate ; A context for 'final
12 idea of oxygen as final electron acceptor ;
13 addition of proton (to oxygen) to form water / (oxygen) reduced to water ;
(b) $\mathbf{1}$ pyruvate formed by glycolysis ;

2 reduced NAD formed by glycolysis ;
3 pyruvate decarboxylated / AW ;
4 ethanal produced
5 pyruvate decarboxylase;
6 ethanal is, hydrogen acceptor / reduced; A gains H or gains H^{+}and e^{-}
7 from / by, reduced NAD;
8 ethanol formed;
9 ethanol / alcohol, dehydrogenase ;
10 not reversible reaction ;
11 NAD, regenerated / can now accept hydrogen atoms
A reduced NAD oxidised
12 so glycolysis can continue

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses
 Paper 4 (May/June 2016), Question 10 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

(a) Describe the behaviour of chromosomes during meiosis.
(b) Outline the differences between structural and regulatory genes.

 leanly to two gramps of haploid mum er and le. of

Q10 Mark scheme
(a) I ref. to nuclear envelope I names of stages meiosis
1 chromosomes, condense / thicken / spiralise 2 homologous chromosomes pair / bivalents form :
3 crossing over/ described
4 chiasma(ta) ;
5 spindle fibres / microtubules, attach to / pull, centromeres kinetochores ; allow once in mp or in meiosis II
6 bivalents line up on, equator / mid-line ; A pairs of homologous chromosomes
7 independent assortment (of homologous pairs) / described; A random assortment
8 chromosomes move to, two ends of cell / poles ; A (pairs of) homologous chromosomes separate

meiosis II

9 (individual) chromosomes / pairs of chromatids, line up on, equator / mid-line
10 at right angles to first equator
11 centromeres divide
12 chromatids separate ; A chromatids move to (opposite) poles
13 ref. to haploid / chromosome number halved / one set of chromosomes ; An for haploid

(b) I polypeptide throughout

structural gene
1 structural protein / enzyme / rRNA ; A any named protein other than a transcription factor (e.g. transporter / receptor / named hormone / immunoglobulin / haemoglobin / etc.) \mathbf{R} if any of these are identified as product of regulatory gene
2 named, structural protein / other protein / enzyme, or tRNA ; R named protein if function wrongly described
3 idea that needed for, structure / function, of cell
regulatory gene
4 (product) controls, gene expression / transcription ; A promote / prevent / start / stop, gene expression or transcription
5 (codes for) transcription factor / DNA-binding protein ;
6 binds to, promoter / operator / DNA response element ;
7 stops / allows, binding of RNA polymerase ;
8 ref. to repressor / repressible ; A silencer
9 ref. to inducer / inducible; A activator / enhancer
$\mathbf{1 0}$ named example of regulatory gene ; A lac repressor / DELLA repressor / homeobox or homeotic or Hox gene

Online classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select
page

www.megalecture.com

pup hor II
 p spindle fibres: and sputinto turd scope chmoxianues
 Telapls II

 A MeAl= I 1 Metaph $h \rightarrow I$

Regulatory gas and structural gene bath lades for priygephide chess that an weston mile jars specific functria. structural gene has an operator that lu a bo binding of RA plymaree to stan trumsipition. Regaletry gen em sometimes fads for punter, that hand to such pmanrate tocontass its trumseripporminte.
 that a not anking pigscicel process for the cell, bent it help in eg elation the trumarpta rater for struck of of

010

Mark scheme
(a)
ref. to nuclear envelope I names of stages meiosis
1 chromosomes, condense / thicken / spiralise 2 homologous chromosomes pair / bivalents form
3 crossing over/ described
4 chiasma(ta) ;
5 spindle fibres / microtubules, attach to / pull, centromeres kinetochores ; allow once in mp or in meiosis II
6 bivalents line up on, equator / mid-line ; A pairs of homologous chromosomes
7 independent assortment (of homologous pairs) / described ; A random assortment
8 chromosomes move to, two ends of cell / poles ; A (pairs of) homologous chromosomes separate

meiosis II

9 (individual) chromosomes / pairs of chromatids, line up on, equator / mid-line :
10 at right angles to first equator
11 centromeres divide
12 chromatids separate ; A chromatids move to (opposite) poles
13 ref. to haploid / chromosome number halved / one set of chromosomes; An for haploid
(b) I polypeptide throughout
structural gene
1 structural protein / enzyme / rRNA ; A any named protein other than a transcription factor (e.g. transporter / receptor / named hormone / immunoglobulin / haemoglobin / etc.) \mathbf{R} if any of these are identified as product of regulatory gene
2 named, structural protein / other protein / enzyme, or tRNA ; R named protein if function wrongly described
3 idea that needed for, structure / function, of cell
regulatory gene
4 (product) controls, gene expression / transcription ; A promote prevent / start / stop, gene expression or transcription
5 (codes for) transcription factor / DNA-binding protein ;
6 binds to, promoter / operator / DNA response element ;
7 stops / allows, binding of RNA polymerase ;
8 ref. to repressor / repressible ; A silencer
9 ref. to inducer / inducible; A activator / enhancer
$\mathbf{1 0}$ named example of regulatory gene ; A lac repressor / DELLA repressor / homeobox or homeotic or Hox gene
[max 6]

Complete lo b

 tagalatory games cony helping male in traserptans. if .
 femur canter its junco tran.
\qquad

 bo plumed to mako amends at the earliest possible opportunity.
 Examinations Copyriote sid
Your
Mark
(a)
010
(a)

Mark scheme meiosis
1 chromosomes, condense / thicken / spiralise 2 homologous chromosomes pair / bivalents form
3 crossing over / described
4 chiasma(ta)
5 spindle fibres / microtubules, attach to / pull, centromeres kinetochores ; allow once in mp or in meiosis II
6 bivalents line up on, equator / mid-line ; A pairs of homologous chromosomes
7 independent assortment (of homologous pairs) / described; A random assortment
8 chromosomes move to, two ends of cell / poles ; A (pairs of) homologous chromosomes separate

meiosis II

9 (individual) chromosomes / pairs of chromatids, line up on, equator / mid-line
10 at right angles to first equator
11 centromeres divide
12 chromatids separate ; A chromatids move to (opposite) poles
13 ref. to haploid / chromosome number halved / one set of chromosomes ; A n for haploid

(b) I polypeptide throughout

structural gene
1 structural protein / enzyme / rRNA ; A any named protein other than a transcription factor (e.g. transporter / receptor / named hormone / immunoglobulin / haemoglobin / etc.) \mathbf{R} if any of these are identified as product of regulatory gene
2 named, structural protein / other protein / enzyme, or tRNA ; R named protein if function wrongly described
3 idea that needed for, structure / function, of cell ;
regulatory gene
4 (product) controls, gene expression / transcription ; A promote prevent / start / stop, gene expression or transcription
5 (codes for) transcription factor / DNA-binding protein ;
6 binds to, promoter / operator / DNA response element ;
7 stops / allows, binding of RNA polymerase ;
8 ref. to repressor / repressible ; A silencer
9 ref. to inducer / inducible; A activator / enhancer
10 named example of regulatory gene ; A lac repressor / DELLA repressor / homeobox or homeotic or Hox gene

MEGA LECTURE

10 (a) Describe the behaviour of chromosomes during meiosis.
(b)' Outline the differences between structural and regulatory genes.
(10) (a) During meiosis 1, chromosomes as arrayed at the equator ot the coll Homelogomis chromasenesare pulled to apposite pales without the separation.... or their centromeres. This results in 2 daughter... falls each with one s set of chromosomes, 2 haplait celts, In meiosis, 2 , chromosomes are agon arranged at the equator of the cell and sss.
 pulled apart ta opposite pales-..Each laughter coll/ Divides into 2 others. This , results in the formation of four daughter cells which are all generically anidentizal to each other. Each of the 4 daughter cells is haploid.
\qquad
\qquad
\qquad
\qquad
\qquad

Q10	Mark scheme
(a)	I ref. to nuclear envelope I names of stages meiosis I
	$\mathbf{1}$ chromosomes, condense / thicken / spiralise ; $\mathbf{2}$ homologous chromosomes pair / bivalents form $\mathbf{3}$ crossing over / described ; $\mathbf{4}$

3 crossing over/described

4 chiasma(ta)
5 spindle fibres / microtubules, attach to / pull, centromeres / kinetochores ; allow once in mp or in meiosis II
6 bivalents line up on, equator / mid-line ; A pairs of homologous chromosomes
7 independent assortment (of homologous pairs) / described ; A random assortment
8 chromosomes move to, two ends of cell / poles ; A (pairs of) homologous chromosomes separate

meiosis II

9 (individual) chromosomes / pairs of chromatids, line up on, equator / mid-line ;
10 at right angles to first equator
11 centromeres divide
12 chromatids separate ; A chromatids move to (opposite) poles
13 ref. to haploid / chromosome number halved / one set of chromosomes ; An for haploid
(b) I polypeptide throughout
structural gene
1 structural protein / enzyme / rRNA ; A any named protein other than a transcription factor (e.g. transporter / receptor / named hormone / immunoglobulin / haemoglobin / etc.) \mathbf{R} if any of these are identified as product of regulatory gene
2 named, structural protein / other protein / enzyme, or tRNA ; R named protein if function wrongly described
3 idea that needed for, structure / function, of cell ;
regulatory gene
4 (product) controls, gene expression / transcription ; A promote / prevent / start / stop, gene expression or transcription
5 (codes for) transcription factor / DNA-binding protein ;
6 binds to, promoter / operator / DNA response element ;
7 stops / allows, binding of RNA polymerase ;
8 ref. to repressor / repressible ; A silencer
9 ref. to inducer / inducible ; A activator / enhancer
10 named example of regulatory gene ; A lac repressor / DELLA repressor / homeobox or homeotic or Hox gene
(b). Structural genes code for the prodictisen ot enzymes <compat>...or all st, sutures stich are responsible oc having. e: role in controlling or maintaining the structure of the algal while ragutarory genes are the genes which. Cade for the productican of proteins what ch ...ace responsible ta fegulapeng the expression of ... other genes. Examples of Stuncusial genes can be the gene caring for the production of cell wallsan. d examples fisc cegularomy genes can be the genes ca ding for the production of DEELA protein....
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\ldots
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q10	Mark scheme
(a)	I ref. to nuclear envelope I names of stages
	meiosis I
	$\mathbf{1}$ chromosomes, condense / thicken / spiralise ;
	$\mathbf{2}$ homologous chromosomes pair / bivalent form ;
	$\mathbf{3}$ crossing over / described ;

3 crossing over/ described

4 chiasma(ta)
5 spindle fibres / microtubules, attach to / pull, centromeres kinetochores ; allow once in mp or in meiosis II
6 bivalents line up on, equator / mid-line ; A pairs of homologous chromosomes
7 independent assortment (of homologous pairs) / described ; A random assortment
8 chromosomes move to, two ends of cell / poles ; A (pairs of) homologous chromosomes separate

meiosis II

9 (individual) chromosomes / pairs of chromatids, line up on, equator / mid-line :
10 at right angles to first equator
11 centromeres divide
12 chromatids separate ; A chromatids move to (opposite) poles
13 ref. to haploid / chromosome number halved / one set of chromosomes ; A n for haploid
(b) I polypeptide throughout
structural gene
1 structural protein / enzyme / rRNA ; A any named protein other than a transcription factor (e.g. transporter / receptor / named hormone / immunoglobulin / haemoglobin / etc.) \mathbf{R} if any of these are identified as product of regulatory gene
2 named, structural protein / other protein / enzyme, or tRNA; R named protein if function wrongly described
3 idea that needed for, structure / function, of cell ;
regulatory gene
4 (product) controls, gene expression / transcription ; A promote prevent / start / stop, gene expression or transcription
5 (codes for) transcription factor / DNA-binding protein ;
6 binds to, promoter / operator / DNA response element ;
7 stops / allows, binding of RNA polymerase ;
8 ref. to repressor / repressible ; A silencer
9 ref. to inducer / inducible ; A activator / enhancer
10 named example of regulatory gene ; A lac repressor / DELLA repressor / homeobox or homeotic or Hox gene

MEGA LECTURE

www.youtube.com/megalecture

Your Mark

\qquad

0 (a) Describe the behaviour of chromosomes during meiosis.
(b) Outline the differences between structural and regulatory genes.

[Total: 15]

 math ye together in the homelogas pain: Awing the

 nat has a foll set of rhomahids

010 Mark scheme

(a) I ref. to nuclear envelope I names of stages meiosis
1 chromosomes, condense / thicken / spiralise
2 homologous chromosomes pair / bivalents form ;
3 crossing over / described
4 chiasma(ta)
5 spindle fibres / microtubules, attach to / pull, centromeres kinetochores ; allow once in mp or in meiosis II
6 bivalents line up on, equator / mid-line ; A pairs of homologous chromosomes
7 independent assortment (of homologous pairs) / described ; A random assortment
8 chromosomes move to, two ends of cell / poles ; A (pairs of) homologous chromosomes separate
meiosis II
9 (individual) chromosomes / pairs of chromatids, line up on, equator / mid-line :
10 at right angles to first equator
11 centromeres divide
12 chromatids separate ; A chromatids move to (opposite) poles
13 ref. to haploid / chromosome number halved / one set of chromosomes ; A n for haploid
(b) I polypeptide throughout
structural gene
1 structural protein / enzyme / rRNA ; A any named protein other than a transcription factor (e.g. transporter / receptor / named hormone / immunoglobulin/ haemoglobin / etc.) \mathbf{R} if any of these are identified as product of regulatory gene
2 named, structural protein / other protein / enzyme, or tRNA ; R named protein if function wrongly described
3 idea that needed for, structure / function, of cell ;
regulatory gene
4 (product) controls, gene expression / transcription ; A promote prevent / start / stop, gene expression or transcription
5 (codes for) transcription factor / DNA-binding protein ;
6 binds to, promoter / operator / DNA response element ;
7 stops / allows, binding of RNA polymerase ;
8 ref. to repressor / repressible ; A silencer
9 ref. to inducer / inducible; A activator / enhancer
10 named example of regulatory gene ; A lac repressor / DELLA repressor / homeobox or homeotic or Hox gene

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture www.megalecture.com

\qquad
\qquad ..

Mark scheme
(a) I ref. to nuclear envelope I names of stages meiosis
1 chromosomes, condense / thicken / spiralise 2 homologous chromosomes pair / bivalents form ,
3 crossing over / described
4 chiasma(ta) ;
5 spindle fibres / microtubules, attach to / pull, centromeres kinetochores ; allow once in mp or in meiosis II
6 bivalents line up on, equator / mid-line ; A pairs of homologous chromosomes
7 independent assortment (of homologous pairs) / described; A random assortment
8 chromosomes move to, two ends of cell / poles ; A (pairs of) homologous chromosomes separate
meiosis II
9 (individual) chromosomes / pairs of chromatids, line up on, equator / mid-line :
10 at right angles to first equator
11 centromeres divide
12 chromatids separate ; A chromatids move to (opposite) poles
13 ref. to haploid / chromosome number halved / one set of chromosomes ; A n for haploid
(b) I polypeptide throughout
structural gene
1 structural protein / enzyme / rRNA ; A any named protein other than a transcription factor (e.g. transporter / receptor / named hormone / immunoglobulin / haemoglobin / etc.) \mathbf{R} if any of these are identified as product of regulatory gene
2 named, structural protein / other protein / enzyme, or tRNA ; R named protein if function wrongly described
3 idea that needed for, structure / function, of cell ;
regulatory gene
4 (product) controls, gene expression / transcription ; A promote prevent / start / stop, gene expression or transcription
5 (codes for) transcription factor / DNA-binding protein ;
6 binds to, promoter / operator / DNA response element ;
7 stops / allows, binding of RNA polymerase ;
8 ref. to repressor / repressible ; A silencer
9 ref. to inducer / inducible ; A activator / enhancer
10 named example of regulatory gene ; A lac repressor / DELLA repressor / homeobox or homeotic or Hox gene
[max 6] [Total: 15]

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses
 Paper 5 (May/June 2016), Question 1 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

www.youtube.com/megalecture

WWW.megalecture.com

Grassland is an important breeding habitat for some birds. These birds feed on plant material and invertebrates. Biodiversity of the habitat is maintained by domestic herbivores, such as sheep, cows and goats, grazing on growing plant material.

A group of students investigated the effect of grazing by domestic herbivores on the plant biodiversity of a grassland as measured by Simpson's Index of Diversity. They investigated two areas. One area was grazed by herbivores and the other area was not grazed for many years because it was surrounded by a fence to keep out the herbivores.
(a) State the data that the students would have collected from the grazed and ungrazed areas to calculate Simpson's Index of Diversity.
The number..... of individuals in each plant the grazed area and the manrazed are separately
grazind...anea.....and total number. of indevidenals. ...fromaks. species...combined.) in the ungrazed arpan[2]
(b) Describe a random_(unbiased) method which the students could have used to collect.the data needed to calculate the biodiversity of the plant species in the two areas.

The description of your method should be detailed enough for another person to follow.
 the frame surrounding the ungrazeal area - using.....
 out the ungraded with a tape - This is to ensure ... the perimeters of both the gus grazed and ...ungrazed area are heft same - Now place ...quadrat of the same size each time (eg fm x Am.) randomly scattered within the determined .boundaries and the grazed land- to Use a random number generator app to determine the coordinates. of where to place the quadrate t_{0} avoid bias... In each quadrat; identify the different species ...of plants carefully and tabulate the number ofthen plants in each species from all thequadats. "Te donor need to know the name of the specie

Q1	Mark scheme	Extra guidance
(a)	Expected answer number of individuals or population of each type of / sort of / species present (in the sample) ; total number of individuals / all populations (of all species);	A count the number in different species A in context of any named organisms
(b)	any 8 from: 1 ref. to sampling in both areas / grazed and ungrazed ; 2 any idea of marking out the area to be sampled ; 3 use a method of generating random numbers (to use coordinates); 4 use a (frame or point) quadrat (for individual samples)	I any ref. to standardising environmental factors. I if listed as the independent
I ref. to transects		
e.g. tape measures / use string		
and marker pole / make a grid of		
plot		
e.g. random number generator /		
app / select number from a hat		

6 ref. to method of identifying or distinguishing different species / types / sorts of plant
7 ref. to counting / recording of: number of individuals or the population of / each
type / sort / species present (in quadrat / plot)
or
the total number of all the plants present (in quadrat / plot)

I any ref. to standardising
environmental factors.
I if listed as the independent I ref. to transects
e.g. tape measures / use string and marker pole / make a grid of e.g. random number generator /
app / select number from a hat I throwing of quadrat
must be clear that the quadrat is the counting frame
spelling of quadrat must be correct at least once

A descriptions, e.g. frame placed on the ground
egg. photographs / key / app expert / nature guide / AW A using letters or numbers for different species

I percentage cover / abundance scale

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

Select
of a certain plant, just be able ta idents.fy that they are two different in pries of plant -using... the same total number of quadrate, repeat this procedure inside the fence that is, the ungrazed land - The table should loot as follows:-

We might have to use a magnifying glass plant species W.... unis now use the formula for simpson's
..Index of Diversity to calculate the infant)
..diversity in the grazed and ungrazed land. ..separatel y_-formula $=1$ - (sn) where ' n ' is the
number of individuals. in a specie and ' N ' is the total number of plants for all species in grazed/ un-... grazed land The answer obtained will be in mum.epical value from o to i- A value lose to nero
.Shows low species diversity -A value closer to 1 shoos high plant brodsineraity - we will akan two values for the Simpson's Index of Diversity , one for
grazed land pone for ungrased land-
\rightarrow for example if table wal like this: -

\qquad

1(b)

\qquad
\qquad
1(c)

1(d) (i) \square
1(d)(ii) \square
1(d) (iii) \square
1(d)(iv) \square

1(e)

1(f) \square

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

The students also investigated the effect grazing had on the height of one particular species of plant. Their hypothesis was:

The mean height of the plant is greater in the ungrazed grassland than the grazed grassland.
(c) State the independent and the dependent variables in this investigation.

dependent variable \qquad mean hecight of the plant \qquad
(d) Table 1.1 shows the results of thali investigation.

Table 1.1

sample number	height of plant/mm	
	grazed area	\cdot ungrazed area
1	586	858
2	549	879
3	526	864
4	589	901
5	545	847
6	538	862
7	573	864
8	549	879
9	604	864
10	611	888
mean	567	870
mode	549	864
median	561	864

(i) Complete Table 1.1 by writing the values of the mode and median for the ungrazed area. [1]

$$
\begin{gathered}
862 \\
.897,858,864,864,864,873,879,888,9,97
\end{gathered}
$$

Your Mark
1(a) \square
1(b) \square

Q1	Mark scheme		
	Expected answer	Extra guidance	
(c)	independent: grazed and / or ungrazed grassland and dependent: (mean) height (of plant) ;	A type of grass land I extent of grazing	[1]
(d)(i)	mode $=864$ and median =864 ;	[1]	

1(d)(i) \square
1(d)(ii) \square
1(d) (iii) \square
1(d)(iv) \square
1(e)

1(f)

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

HIGH
MIDDLE
LOW
(ii) Use the information and formula below to calculate the standiard error for these results.

Give your answers to 3 significant figures.
$\mathrm{S}_{M}=\frac{s}{\sqrt{n}}$
$\begin{array}{ll}\text { grazed area: } & s=29.5 \\ \text { ungrazed area: } & s=15.7\end{array}$
standard error, grazed area $=, \ldots9 .3 .3$
standard error, ungrazed area $=\ldots96$
Standard error is used to calculate 95\% Confidence Intervals-(CI).
The values for the grazed area are 548.3 mm to 585.7 mm .
(iii) Use the formula below to calculate the confidence intervals for the ungrazed area.

$$
95 \% \mathrm{CI}=\text { mean } \neq 2 \mathrm{~S}_{\mathrm{M}}
$$

Shów your working.

$$
\begin{array}{lll}
& 870+2(4.96) & \text { and } 870-2(4.96) \\
=879.9 & \text { and } 860.1
\end{array}
$$

ungrazed area
860.1 \qquad mm to 879.9 9.............mm [2]
(iv) State what information is gained by calculating the confidence intervals.
A. 95% confidence intemal means that we can be ... 95% certain that the true value for mean Lies angme ...n below tup times the standard erion - for example, - for grazed area if anothe' sample is collected, we'll be . 95% pertain heigh of the plants (n that sample

	01	Mark scheme	
		Expected answer	Extra guidance
	(d)(ii)	$\begin{aligned} & \text { SM grazed }=9.33 ; \\ & \text { SM ungrazed }=4.97 / 4.96 ; \end{aligned}$	max 1 if answers are to 1 dp or 3 $d p$ (9.3 / 9.329, 5.0 / 4.965)
	(d) (iii)	$\begin{aligned} & 860.1 \text {; } \\ & \text { to } 879.9 \text {; } \end{aligned}$	A ecf from 1(d)(ii)for correct calculation from incorrect S_{M}
1(c) 1(d)(i) 1(d)(ii)	(d) (iv)	any 2 from: 95% confident / sure / certain that the mean lies within these limits ; shows the reliability of the mean ; the ungrazed mean is more reliable (because it's smaller) ; the difference between means is significant because there is no overlap between Cl for ungrazed and grazed ;	must be a clear statement \mathbf{R} if ref. to accuracy or results AW ora the grazed is less reliable (because it is bigger)

1(d)(iii) \square
1(d) (iv) \square
\square
1(f)

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(e) The students used the mark-release-recapture method to estimate the population of an invertebrate animal found living on the grassland. They used the formula:
number of animals marked in the first sample \times total number of animals in the second sample number of marked animals in the second sample

State two precautions the students should have taken to ensure that the results they obtained were valid.
 ...sufficient time tr..................the the other grassland animals randomly. When they were first released.).

 ..they.....werereleased
(f) The population of an invertebrate that feeds on seeds was estimated in both the grazed and ungrazed areas. Predict which area would have the greatest population and give a reason for your choice.
 \qquad
reason. Because animals remove plants (graze on them)..... [1] Answer If continued
\rightarrow sometimes by uprooting the whole plants or grasses so that their seeds are no longer
covered with sot. The seeds and embryos

- are exposed like this, also when soil
erosion recurs so the invertebrates are
abbe to feed on many of these that ane scattered on bane or almost hare (grazed land)-

Your

1(b)

1(c)

1(d) (i) \square
1(d)(ii) \square
1(d) (iii) \square

1(d)(iv) \square

1(e) \square
1(f) \square

MEGA LECTURE

www.youtube.com/megalecture
 www.megalecture.com

1 Grassland is an importánt broeding habitat for some birds. These birds feed on plant material and invertebrates. Biodiversity of the habitat is maintalned by domestlc, herblvores, such as sheep, cows and goats, grazing on growing plant'material.

A group of students investigated the effect of grazing by domiestic herblvores on the plan biodiversity of a grassland as męasured by Simpson's Index of Diversity. They investigated two areas. One area was grazed by herbivores and the other area was not grazed for many years because it was surrounded by a fence to keep out the herblvores.
(a) State the data that the students would have collected from the grazed and ungrazed areas to calculate Simpson's Index of Diversity.
n f Number of individuals of a partacular species

$$
\text { (Herbinoren) }\left(\left(P_{1} \text { ant } s p e c \mid R 2\right)\right.
$$

$N=$ Iotal number of all organisms in the area of investigation
(b) Describe a random (unblased) method which the students could have used to collect the data needed to calculate the biodiversity of the plant species in the two areas.

The description of your method should be detaled enough for another person to follow.
(1). Two different areas are sampled. Ovie avea that
was grazed by herbivores and \& another area not gictzed by herbivores for miny years. Enture ampling occuive in these ? istrict areat Areareup that sampling occurs in these 2 distinct areat. These dercip
(2) Diversity is calculated using $21 \mathrm{mpcon} / \mathrm{s}$ index of Diversity formula $=1-\sum\left(\frac{n}{N!}\right)^{2}$
(3) The same student should carry out random sampling in each of the 2 areas. The shape and size of
quadrat should be the same. A square of $1 \mathrm{~m}^{2}$ is used. samples are taken at the same time of day, for example, in the morning
(4) Use quadrat sampling technique. A student, with. ryes ciosed, randomlŷ thro ins a quargoliat in one of the 2 areas. The area in which the quadrat fands is observed. The number of different and

1(b)

01	Mark scheme	
	Expected answer	Extra guidance
(a)	number of individuals or population of each type of / sort of / species present (in the sample) ; total number of individuals / all populations (of all species);	A count the number in different species A in context of any named organisms
(b)	any 8 from: 1 ref. to sampling in both areas / grazed and ungrazed ; 2 any idea of marking out the area to be sampled ; 3 use a method of generating random numbers (to use coordinates); 4 use a (frame or point) quadrat (for individual samples) ; 5 place (quadrat AW) at coordinates ; 6 ref. to method of identifying or distinguishing different species / types / sorts of plant ; 7 ref. to counting / recording of: number of individuals or the population of / each type / sort / species present (in quadrat / plot) or the total number of all the plants present (in quadrat / plot) ;	I any ref. to standardising environmental factors. I if listed as the independent I ref. to transects e.g. tape measures / use string and marker pole / make a grid of plot e.g. random number generator / app / select number from a hat I throwing of quadrat must be clear that the quadrat is the counting frame spelling of quadrat must be correct at least once A descriptions, e.g. frame placed on the ground e.g. photographs / key / app / expert / nature guide / AW A using letters or numbers for different species I percentage cover / abundance scale

MEGA LECTURE

distinct Piant specves that is in the quadiat is noted and written down as numerals. Plant specses that are nof
...
(5) Step 4 is repeated for a further A time at difierent
positions in the area grazed by herblvores and
the dred not grazed by herbivores. formuila is used to eatculate Diversity of area.
(6) Few assumptions are miade. Number of orgianisin present in quadrat in the experiments are
representative of total poputation in a particular area. Throwing of qua diat should be completely random
(7) Low nist experiment Ensure that only 1 person
throws quadrat and all other students are a considerable distance away to avosd being hit by guadrat.
(8) 5 times throw of quadrat is repeated 3 times and the average values from the experment and of Siripson's Biodiversity Index is calculated.
(9) Same person should calculate the number of plarit epecies in each quadrat. This is to avoid biasines. Sampling is done at same tume of day to give the same temperdture. Ensurk that sampling in jerazed area is done whon there are no herbivores grazing so as to not a ffect hurk herbivores and for them not to interfere with experiment.

- A control experiment is set up on an area ather than a grasstiand. Ensure for ungrazed area that quadrat is not thrown out of fence carry out experiment duving The day for easy visuatisation of number of organisms.

1(b)

Q1 Mark scheme

	Expected answer	Extra guidance
(b)	8 same size quadrat / same quadrat AW ; 9 same size plot in each area; 10 same number of different quadrats / samples per plot ;	e.g. 10 quadrats in each plot I repeat 3 times and find a mean A if only replicate with different plots in one area I repeat 3 times and take a mean

13 safety
any 1 from:

- ref. to injury / getting lost and staying with group ;
- allergy to plants and wearing gloves / protective clothing ;
- allergy to pollen / hay fever and wearing mask or taking
medication ;
- ref. to uneven ground /
hazardous plants or animals or
environment and wearing suitable shoes / protective
clothing ;

I low risk

A any suitable example - thorny / stinging plants, insect bites / stings, snakes, belligerent grazing animals and a suitable precaution

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

The students also investigated the effect grazing had on the height of one particular species of plant. Their hypothesis was:

The mean height of the plant is greater in the ungrazed grassland than the grazed grassland.
(c) State the independent and the dependent variables in this investigation.
independent variable The tupe of grasciand (Grazed or
 dependent variable Mean height of a particular spedies
(d) Table 1.1 shows the results of their investigation.

Table 1.1

sample number	height of plant/mm	
	grazed area	ungrazed area
1	586	858
2	549	873
3	626	884
4	589	901
5	545	847
6	538	862
7	573	864
8	549	879
9	604	864
10	611	888
mean	567	870
mode	549	864
median	561	864

(i) Complete Table 1,1 by writing the values of the mode and median for the ungrazed area.
$847,858,862,864,864,864,873,879,888,901$

1(b) \square

Q1	Mark scheme	Extra guidance	
	Expected answer (c) ungrazed grassland dependent: (mean) height (of plant) ;	A type of grass land I extent of grazing	[1]
(d)(i)	mode $=864$ and median $=864 ;$	[1]	

1(e) \square

1(f)

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(ii) Use the information and formula below to calculate the standard error for these ressults.

- Give your answers to 3 significant figures.
$S_{M}=\frac{s}{\sqrt{n}}$
grazed area: $\quad s=29.5$
ungrazed area: $\quad s=157$
$\mathrm{S}_{\mathrm{M}}=$ standard error
$s=$ standard deviation
$s=$ standard deviation
$n=$ saimple size (number of observations)
$S_{m \text { qrazed }}=\frac{29.5}{\sqrt{10}}$

$$
8_{22} \text { ingrazed }=\frac{15 \cdot 7}{\sqrt{10}}
$$

9.33

$$
4.96
$$

4.96
standard error, grazed area $=$
[2]

Standard error is used to calculate 95\% Conficience Intervals (CI).
The values for the grazed area are 548.3 mm to 585.7 mm .
(iii) Use the formula below to calculate the confidence intervals for the ungrazed area.

$$
95 \% \mathrm{CI}=\text { mean } \pm 2 \mathrm{~S}_{M}
$$

Show your working.

$$
\begin{array}{ll}
=810 \pm(4.96) 2 \\
=870+9.92 & \\
=879.92 &
\end{array}
$$

$$
\begin{align*}
& \text { Print Script } \\
& \text { ungrazed areamm to } \quad 879.9 \tag{2}
\end{align*}
$$

(iv) State what information is gained by calculating the confidence intervals. Whether the difference between 2 means its significantly different if difference between meane is significointly different, then those dipferences have occured not by chance. If difterences are not siqnificant; they have occured by chance.
(oo ascertain the probobibless vovinues at which the means are considered to be siquificantly different.

MEGALECTURE

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

(e) The students used the mark-release-recapture method to estimate the population of an invertebrate animal found living on the grassland. They used the formula:
number of animals marked in the first sample \times total number of animals in the second sample number of marked animals in the second sample

State two precautions the students should have taken to ensure that the results they obtained were valid.

1. Animals donit lose their marks. Enough time is
given for marked and unmarked animale to \qquad intermingle Marks don't hurt animats.
2. Nothing has happened to upset the balance of the number of animals. Examples are predation, mipration mortality- \qquad
(f) The population of an invertebrate that feeds on seeds was estimated in both the grazed and ungrazed areas. Predict which area would have the greatest population and give a reason for your cholce:
choicegrazed areas.
reason Herght of plants increases and they can
reach a greater reproductive age and
underao pollination. This produces seeds.
[Total:21]

Online Classes : Megalecture@gmail.com
 www.youtube.com/megalecture
 www.megalecture.com

1 Grassland is an important breeding habitat for some birds. These birds feed on plant material and invertebrates. Biodiversity of the habitat is maintained by domestic herbivores, such as sheep, cows and goats, grazing on growing plant material:

A group of students investigated the effect of grazing by domestic herbivores on the plant biodiversity of a grassland as measured by Simpson's Index of Diversity. They investigated two areas. One area was grazed by herbivores and the other area was not grazed for many years because it was surrounded by a fence to keep out the herbivores.
(a) State the data that the students would have collected from the grazed and ungrazed areas to calculate Simpson's Index of Diversity.

Tokal number of species in the grazed and ungrazed ared
...Numper of organisms of each species in poth prased and
....ungrozed areas.
This information is required to calculate simpson's Index... of
Divensity.
(b) Describe a random (unbiased) method which the students could have used to collect the data needed to calculate the biodiversity of the plant species in the two areas.

The description of your method should be detailed enough for another person to follow.
...The person must follow the method of random sampling.
.....ist....take a quadrat..........pace it anywhere in the area randomnly so that the resuits are not biased and represent. the entire area Cout the different number of species present in the ghadrat. ASo count now many of that some, species is
present. in that pusadrat These value must be plotted in a

Readings for shaidratiused in grated area.

.........'. Simpsn's Index of Diversity can be used to find the
..............species Diversity which wiu represent the biodquersigy of

1(b)

1(c)

1(d) (i)

1(d)(ii)

1(d)(iii)

1(d)(iv)

1(f)

01	Mark scheme	
	Expected answer	Extra guidance
(a)	number of individuals or population of each type of / sort of / species present (in the sample) ; total number of individuals / all populations (of all species);	A count the number in different species A in context of any named organisms
(b)	any 8 from: 1 ref. to sampling in both areas / grazed and ungrazed ; 2 any idea of marking out the area to be sampled ; 3 use a method of generating random numbers (to use coordinates); 4 use a (frame or point) quadrat (for individual samples) ; 5 place (quadrat AW) at coordinates ; 6 ref. to method of identifying or distinguishing different species / types / sorts of plant ; 7 ref. to counting / recording of: number of individuals or the population of / each type / sort / species present (in quadrat / plot) or the total number of all the plants present (in quadrat / plot) ;	I any ref. to standardising environmental factors. I if listed as the independent I ref. to transects e.g. tape measures / use string and marker pole / make a grid of plot e.g. random number generator / app / select number from a hat I throwing of quadrat must be clear that the quadrat is the counting frame spelling of quadrat must be correct at least once A descriptions, e.g. frame placed on the ground e.g. photographs / key / app / expert / nature guide / AW A using letters or numbers for different species I percentage cover / abundance scale

www.megalecture.com

Simpoins Index of Diversity $=1-\left(\frac{\text { zn }}{4}\right)$
.....wheren.
N is the total number of organisms in all the species
n is the number of species in any particular specie
..... Divide number of organims for each species by the total
......number of organisms........
.... Add all of them up....and subtract the value of rained by 1
........The value must be perween 0 and 1 Value
Closer to 4 mare is the species diver-sity and Hence more is
.....the biodeversity.
of onch specier and...Jatah. Number. of species. Morc thenumber. of species and more equally their abundanes ore. λmore would be the biodiversity of that area.

........hplaced randomly .sp that the resulg are hot biased
............Anover anain simprons Index of diversicy can be usedto find a Value
................. These values indicate hou much the biodiversity ofthat...area is
........................hese value . .caluslared using Simpson's Index of \qquad
Divensty can also be compared to get an ides which orea \qquad
has more Piodivessily. \qquad

Test crorses must also beame betwen thes ome speries of (mere genefie variation).
plant as mare allekeso also represents an increases in biodivensity[8]
\square

1(b)

Q
Mark scheme
Expected answer \quad Extra guidance
(b) 8 same size quadrat / same quadrat AW ;
9 same size plot in each area 10 same number of different quadrats / samples per plot ; 11 replicate the procedure with a different plot in a given area 12 sample at different times of year / seasons ;
13 safety
any 1 from:

- ref. to injury / getting lost and staying with group
- allergy to plants and wearing gloves / protective clothing ;
- allergy to pollen / hay fever and wearing mask or taking
medication ;
- ref. to uneven ground /
hazardous plants or animals or
environment and wearing suitable shoes / protective
clothing ;
e.g. 10 quadrats in each plot I repeat 3 times and find a mean A if only replicate with different plots in one area
I repeat 3 times and take a mean I sampling on same day / next week

I low risk

A any suitable example - thorny / stinging plants, insect bites / stings, snakes, belligerent grazing animals and a suitable precaution
[max8]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

The students also investigated the effect grazing had on the height of one particular species of. plant. Their hypothesis was:

The mean height of the plant is greater in the ungrazed grassland than the grazed grassland.
(c) State the independent and the dependent variables in this investigation.
independent variable ...graxing \qquad
(d) Table 1.1 shows the results of their investigation.

Table 1.1

sample number	height of plant/mm	
	grazed area	ungrazed area
1	586	858
2	549	873
3	526	864
4	589	901
5	545	847
6	538	862
7	573	884
8	549	879
9	604	864
10	611	888
mean	567	870
mode	549	864
median	561	864

(i) Complete Table 1.1 by writing the values of the mode and median for the ungrazed area.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

(ii) Use the information and formula below to calculate the standard error for these results.

Give your answers to 3 significant figures.
$\mathrm{S}_{\mathrm{M}}=\frac{s}{\sqrt{n}}$
grazed area: . . $\quad s=29.5$.
ungrazed area: . $\quad s=15.7$

standard error, úngrazed area $=\ldots . .4 .96$. 2$]$

Standard error is used to calculate 95\% Confidence Intervals (CI).
The values for the grazed area are 548.3 mm to 585.7 mm .
(iii) Use the formula below to calculate the confidence intervals for the ungrazed area.

$$
95 \% \mathrm{CI}=\text { mean } \pm 2 \mathrm{~S}_{\mathrm{M}}
$$

Show your working.

$$
\begin{aligned}
95 \% C I & =567 \pm 2 \times 496 \\
& =567 \pm 9.92
\end{aligned}
$$

$-567+$ areag. 46

- 567 - 4.96
ungrazed area571. 96 \qquad mm to 562.04 ...mm
(iv) State what information is gained by calculating the confidence intervals.
...ins information apined boy calculating the confidence intervals..... ..tril....us. that we are 95% sure thak plants uge with \qquad
 their height has not been effected by grozing.. \qquad

www.youtube.com/megalecture

www.megalecture.com

(e) The students used the mark-release-recapture method to estimate the population of an invertebrate animal found living on the grassland. They used the formula:
number of animals marked in the first sample \times total number of animals in the second sample number of marked animals in the second sample

State two precautions the students should have taken to ensure that the results they obtained were valid.
 \qquadmark the animalsso that each one marked, remains \qquad ...marked unvifl the recapture. \qquad
2. .They should give enough:itime to the organims to \qquad ...xandminy spread in their habilat so that the results are..... not biosed and represent the entire area heing inwestigated. [2]
(f) The population of an-invertebrate that feeds on seeds was estimated in both the grazed and ungrazed areas. Predict which area would have the greatest population and give a reason for your choice:
choice ..nnograzed area.
have been cater
reason ...More planrs ${ }^{\text {no so more availability of seeds as the }}$
seeds have been exposed when the plant was eaten as seeds can not be digested by grating
aminals and so are left bemind.

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

Interactive Example Candidate Responses Paper 5 (May/June 2016), Question 2 Cambridge International AS \& A Level Biology 9700

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

MEGALECTURE

www.youtube.com/megalecture

HIGH

www.megalecture.com

2 Medical researchers carried out an investigation into the effect of smoking in a country. A group of male volunteers had their peak expiratory flow rate (PEFR) measured as shown in Fig. 2.1.

Fig. 2.1
PEFR measures the maximum speed of airflow through the bronchi during breathing out in dm^{3} per minute $\left(\mathrm{dm}^{3} \mathrm{~min}^{-1}\right)$. Peak flow readings are lower when the airways are constricted.

The volunteers were grouped according to the number of packets of cigarettes that they smoked per year. Each packet contains 20 cigarettes.

Table 2.1 shows the results of the-investigation.
Table 2.1

group	1	2	3	4	5
number of packets of cigarettes smoked per year	0	1-50	51-100	101-150	151-230
mean number of packets smoked per group $\pm s$	0	$\begin{gathered} 30.61 \\ \pm 10.47 \end{gathered}$	$\begin{gathered} 73.80 \\ \pm 16.52 \end{gathered}$	$\begin{aligned} & 127.27 \\ & \pm 9.66 \end{aligned}$	$\begin{aligned} & 189.22 \\ & \pm 27.51 \end{aligned}$
mean age of volunteers $\pm s$ /years	$\begin{array}{r} 26.42 \\ \pm 5.61 \end{array}$	$\begin{aligned} & 22.82 \\ & \pm 3.28 \end{aligned}$	$\begin{aligned} & 26.66 \\ & \pm 3.59 \end{aligned}$	$\begin{aligned} & 28.90 \\ & \pm 4.20 \end{aligned}$	$\begin{aligned} & 36.22 \\ & \pm 3.21 \end{aligned}$
$\begin{aligned} & \text { mean PEFR } \pm s \\ & / \mathrm{dm}^{3} \mathrm{~min}^{-1} \end{aligned}$	$\begin{aligned} & 513.43 \\ & \pm 87.58 \end{aligned}$	$\begin{aligned} & 494.70 \\ & \pm 79.22 \end{aligned}$	$\begin{aligned} & 443.33 \\ & +45.14 \end{aligned}$	$\begin{aligned} & 350.90 \\ & \pm 32.38 \end{aligned}$	$\begin{aligned} & 300.00 \\ & \pm 46.90 \end{aligned}$
number of volunteers tested	64	14	15	12	8

$s=$ standard deviation

2(b) \square

	Expected answer	Extra guidance
2(a)	any 3 from: 1 body mass / weight ; 2 number of volunteers in each	I diet / sex / alcohol consumption / medication / drugs / range of number of packets of

/ medication / drugs / range
cigarettes
A same number in each age group
A asthma, CF, COPD, TB, lung cancer
A disease affecting the lungs / A disease
A living at altitude
A minimum time since last cigarette
I passive smoking
A in terms of nicotine / tar / filter /brand
A not after exercise / at rest
[max3]
answers must either include both 'means' or link relevant
data for any two groups lage or PEFR and number of packets smoked) from Table 2.1 I comparisons of age with PEFR must link PEFR values to the amount smoked / number of packets (not just quote from the table)
e.g. (mean) PEFR decreases from 513.43 to 300.00 with increase in packets / cigarettes smoked
smoked) PEFR decreases the (mean) number
packets increase from 0 to 189.22 A non-smokers / group 1 has the highest mean PEFR

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(a) State three variables which should have been-standardised in this investigation.

The of the maler
-...The ethenicity of the males

- He the fereen smoking for
-... In Their condition whilst taking the test, for
example everinone shourd be rested.s.tting dron.
The humpre of hours they do not smoke hefore the test, foriexample 24 hours \qquad
(b) The medical rescarchers made two conciusions based on the data shown in Table 2.1.

1. An increase in the number of packets smoked decreases the PEFR measurement.
2. The number of packets smoked increases with age.

State how the results from Table 2.1 support these conclusions and how they do not support these conclusions.
support
For condusion one, it does suppor because aroup. 1 is mean $P \in T R$ is $T 13.43$, and Group 3 's is 443.33 andgmp S's is The (wwest with 300.00 , as the maan namber of fact For conclusion 2 it does suipat because from group $2 t \rightarrow S^{\prime}$. The age in reases from 22.62 to 36.22 as the packs
stnoked alsogo up do not support
For conclusion one, it doesn't suppoit, beccurse, the ..standard devianon for hroup 1 and 2 arelap.... signiticantly. As well as group 2 and z (formean Pe Forconclusion 2, Gwop 1's mean age 10 cigarette). is. higher than wroop 2 's mesinage 1 -socigundly

	Expected answer	Extra guidance
2(b)	conclusion 2 (the number of packets smoked increases with age)	must link age values to the amount smoked / number of packets (not just quote from the table)
	4 as mean age increases the	must not use group 1 data here
	mean number of packets	(26.42 and 0)
increases ;	e.g. (mean) number of packets	
	5 compare data from two age	increases from 30.61 to
	groups and a trend on smoking	189.22 with an increase in age
or	e.g. (mean) age increases from	
	compare data from two mean	
number of packets smoked and a	22.82 to 36.22 as the	
(mean) number of packets		
trend		

and trend on age smoked increases

6 oldest volunteers / group 5 smoked the highest mean number of packets;
does not support (max 2)
conclusion 1 (an increase in the number of packets smoked decreases
the PEFR measurement)
7 as the number packets
increases
and
the values / range / standard deviation of PEFR of two of the groups
overlap ;
conclusion 2 (the number of packets smoked increases with age)
8 values / range/ standard deviation of the ages (for each group) overlap
or
there are no distinct age groups / age groups overlap ;
9 group 2 smoke more packets than group 1 but (mean) age is lower
\square

MiDLE

A the youngest smokers / group 2 smoked the least mean number of packets
A the largest mean number of packets was smoked by the oldest people
e.g. overlap between: group 1 / non-smokers and group 2
group 1 / non-smokers and group 3
group 2 and group 3
group 4 and group 5
A individuals in groups 1, 2, 3 and 4 all have a similar / same age

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(c) (i) State a null hypothesis for a statistical test to find out whether the data in Table 2.1 supports the conclusion that:
An increase in the number of packets smoked decreases the PEFR measurement.
There is no sugnficant felatinnship between inyeare [知
 - IA PE FR measurement.[1]
(ii) State two ways in which the data for group 5 is less trustworthy compared with the data for the other groups.
Namber of volunters tested is less. It has the fargest standard devionon in The mannmer of packs smoted. +2751 .
\qquad ... [2] [Total: 9]

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Fig. 2.1
PEFR measures the maximum speed of aifilow through the bronchi during breathing out in dm^{3} per minute $\left(\mathrm{dm}^{3} \mathrm{~min}^{-1}\right)$. Peak tlow readings are lower when the airways are constricted.

The volunteers were grouped according to the number of packets of cigarettes that they smoked per year. Each packet contains 20 cigarettes.

Table 2.1 shows the results of the investigation.
Table 2.1

group	1	2	3	4	5
number of packets of cigarettes smoked per year	0	1-50	51-100	101-150	151-230
mean number of packets smoked per group $\pm s$	0	$\begin{gathered} 30.61 \\ \pm 10.47 \end{gathered}$	$\begin{gathered} 73.80 \\ \pm 16.52 \end{gathered}$	$\begin{aligned} & 127.27 \\ & \pm 9.66 \end{aligned}$	$\begin{aligned} & 189.22 \\ & \pm 27.51 \end{aligned}$
mean age of volunteers $\pm s$ /ycars	$\begin{array}{r} 26.42 \\ \pm 5.61 \end{array}$	$\begin{gathered} 22.82 \\ \pm 3.28 \end{gathered}$	$\begin{aligned} & 26.66 \\ & \pm 3.59 \end{aligned}$	$\begin{aligned} & 28.9 \\ & \pm 4.2 \end{aligned}$	$\begin{gathered} 36.22 \\ \pm 3.21 \end{gathered}$
$\begin{aligned} & \text { mean PEFR } \pm s \\ & / \mathrm{dm}^{3} \mathrm{~min}^{-1} \end{aligned}$	$\begin{array}{r} 513.43 \\ \pm 87.58 \end{array}$	$\begin{aligned} & 494.70 \\ & \pm 79.22 \end{aligned}$	$\begin{array}{r} 443.33 \\ \pm 45.14 \end{array}$	$\begin{aligned} & 350.90 \\ & \pm 32.38 \end{aligned}$	$\begin{aligned} & 300.00 \\ & \pm 46.90 \end{aligned}$
number of volunteers tested	64	14	15	12	8

50.25 .

2(b)

2(c)(ii) \square

02	Mark scheme
	Expected answer
2(a)	any 3 from: 1 body mass / weight ; 2 number of volunteers in each group ; 3 age of volunteers ; 4 no factor affecting air flow / lung capacity ; 5 (physical) fitness of volunteers ; 6 (type of) cigarette smoked ; 7

9 time of day the PEFR test performed
10 ethnicity / race ;
any 3 from
support (max 2)
conclusion 1 (an increase in the number of packets smoked decreases the PEFR measurement)
1 the mean PFER decreases as the mean number of packets / cigarettes smoked increase 2 compare data from two PEFR and a trend on smoking
or
compare data from two number of packets smoked and a trend in PEFR
3 highest no. of packets / cigarettes smoked has the lowest mean PEFR ;

Extra guidance

I diet / sex / alcohol consumption / medication / drugs / range of number of packets of cigarettes;
A same number in each age group
A asthma, CF, COPD, TB, lung cancer
A disease affecting the lungs / A disease
A living at altitude
A minimum time since last cigarette
I passive smoking
A in terms of nicotine / tar / filter brand
A not after exercise / at rest
answers must either include both 'means' or link relevant
data for any two groups (age or PEFR and number of packets smoked) from Table 2.1 I comparisons of age with PEFR must link PEFR values to the amount smoked / number of packets (not just quote from the table)
e.g. (mean) PEFR decreases from 513.43 to 300.00 with increase in packets / cigarettes smoked
e.g. (mean) PEFR decreases as the (mean) number
packets increase from 0 to 189.22 A non-smokers / group 1 has the highest mean PEFR

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(a) State three variables which should have been standardised in this investigation.
\qquad
........ Same........stan dard.........eviation.
..................................number........t.........ootunteers........testedin
........each group.
.............................interval within... paclets.
........a.f.......egarettes..........smaked...........per.....女ear.
\qquad
\qquad
(b) The medical researchers made two conclusions based on the data shown in Table-2.1.

1. An increase in the number of packets smoked decreases the PEFR measurement.
2. The number of packets smoked increases with age.

State how the results from Table 2.1 support these conclusions and how they do not support these conclusions.
support
 number of

increase...........ith mean age..................increases...............6.42.......... + 36.22
do not support \rightarrow The overlapping of standard deviation is too large
 \qquad

 yolunteer i...........who Smokes..................Packets.....hane.....highor...PEFR
...........thas......th......wha......5make.......fewer...........acke.ts \qquad .. [3]

- For statment $\left.{ }^{2} 26.66+3,59\right)$ mparing group 3 and 4, people with age about 30 smoke fewer packets than those who gge is about 3425 in groul 4 .

02 Mark scheme

	Expected answer	Extra guidance
2(b)	conclusion 2 (the number of packets smoked increases with age)	must link age values to the amount smoked / number of packets (not just quote from the table)
	4 as $\underline{\text { mean age increases the }}$	must not use group 1 data here
	mean number of packets	(26.42 and 0)
	increases ;	e.g. (mean) number of packets
	5 compare data from two age	increases from 30.61 to
	groups and a trend on smoking	189.22 with an increase in age
	or	e.g. (mean) age increases from
	compare data from two mean	22.82 to 36.22 as the

mount smoked / n packets (not just quote from the table) (26.42 and 0)
e.g. (mean) number of packets reases from 30.61 to e.g. (mean) age increases from mean) number of packets smoked increases
A the youngest smokers / group 2 smoked the least mean number of packets
A the largest mean number of packets was smoked by the oldest people
e.g. overlap between: group 1 / non-smokers and group 2
group 1 / non-smokers and group 3
group 2 and group 3
group 4 and group 5
A individuals in groups 1, 2, 3 and 4 all have a similar / same age
conclusion 2 the number of packets smoked increases with age)
8 values / range/ standard deviation of the ages (for each group) overlap
or
there are no distinct age groups age groups overlap ;
9 group 2 smoke more packets than group 1 but (mean) age is lower

MEGALECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

(c) (i) State a null:hypothesis for a statistical test to find out whether the data in Table 2.1 supports the conclusion that:

An increase in the number of packets smoked decreases the PEFR measurement.

....betwen.......increoses......in......the......numbex......f......porkets.....moked
 \qquad [1]
(ii) State two ways in which the data for group 5 is less trustworthy compared with the data for the other groups.

$$
\begin{aligned}
& \text {......................the..........interyal...................n.umber........t.....p.ackets........ } \\
& \text {........of..........igarrettessmoked.......pex.....y.ear i...........not............. } \\
& \text {.........some.......as.......the..........ther.......group. }
\end{aligned}
$$

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

2 Medical researchers carried out an investigation into the effect of smoking in a country. A group of male volunteers had their peak expiratory flow rate (PEFR) measured as shown in Fig. 2.1.

Fig. 2.1
PEFR measures the maximum speed of airflow through the bronchl during breathing out in dm^{3} per minute $\left(\mathrm{dm}^{3} \mathrm{~min}^{-1}\right)$. Peak flow readings are lower when the airways are constricted.

The volunteers were grouped according to the number of packets of cigarettes that they smoked per year. Each packet contains 20 cigarettes.

Table 2.1 shows the results of the investigation.
Table 2.1

group	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
number of packets of cigarettes smoked per year	0	$1-50$	$51-100$	$101-150$	$151-230$
mean number of packets smoked per group $\pm s$	0	30.61 ± 10.47	73.80 ± 16.52	127.27 ± 9.66	189.22 ± 27.51
mean age of volunteers $\pm s$	26.42	22.82	26.66	28.90	36.22
/years	± 5.61	± 3.28	± 3.59	± 4.20	± 3.21
mear P PEFR $\pm s$ $/ \mathrm{dm}^{3} \mathrm{~min}^{-1}$	513.43	494.70	443.33	350.90	300.00
± 87.58	± 79.22	± 45.14	± 32.38	± 46.90	
number of volunteers tested	64	14	15	12	8

$s=$ standard deviation

Mark Comment
1/3 The candidate gained credit for this answer.
This answer did not gain credit as the investigation does include a way of standardising this variable.
This statement is not relevant and suggests that this candidate does not understand that standard deviation is one way of showing uncertainty.

2/3 This statement could have gained mp4 or mp5, but did not gain credit as the candidate omitted 'mean' from the number of packets (mp4) and did not quote the figures to show the increase in the numbers of packets(mp5).
The candidate gained mp 2 as they have quoted relevant figures for the decrease n PEFR linked to an increase in the number of packets of cigarettes.
This answer gained mp9 as the candidate has made a link between a decrease in mean age and and increase in number of cigarettes.

2(c)(i) \square

2(c)(ii) \square

0/1 This answer is a weak description of a negative correlation, which is true, but not a null hypothesis. A null hypothesis should state that there is no significant correlation between the changes in the two parameters being assessed, in this case, the decrease in PFER and the increase in smoking

1/2 This answer is not relevant. The differences in ages does not affect validity, which is more concerned with the reliability of the data for this group.
The candidate gained credit for this answer.
(a) State three variables which should have been standardised in this investigation.
-... The number of volunteers tested should be
Same in all groups.

- The number of packets of cing cigarettes. smoked per year in all groups should be the same
- Use uncertainty instead of standard deviation.
\qquad
\qquad
(b) The medical researchers made two conclusions based on the data shown in Table 2.1.

1. An increase in the number of packets smoked decreases the PEFR measurement.
2. The number of packets smoked increases with age.

State how the results from Table 2.1 support these conclusions and how they do not support these conclusions.
support
 number of packets smoked increases the mean......... ..age of volunteres also increases.

- fram grome 1 to 5 , mean PEFR desrease from 5.3 .43 t. 300 -00 as number of smaked icigarrettes increase,
do not support
- from Paramp 1 to 2 , mean age bf volunterers decreases as number of packets smoked increases \qquad -... \qquad
\qquad
\qquad

Mark Comment
1/3 The candidate gained credit for this answer.
This answer did not gain credit as the investigation does include a way of standardising this variable.
This statement is not relevant and suggests that this candidate does not understand that standard deviation is one way of showing uncertainty.

2/3 This statement could have gained mp 4 or $\mathrm{mp5}$, but did not gain credit as the candidate omitted 'mean' from the number of packets (mp4) and did not quote the figures to show the increase in the numbers of packets(mp5).
The candidate gained mp 2 as they have quoted relevant figures for the decrease n PEFR linked to an increase in the number of packets of cigarettes.
This answer gained mp9 as the candidate has made a link between a decrease in mean age and and increase in number of cigarettes.

2(c)(i)

2(c)(ii) \square

0/1 This answer is a weak description of a negative correlation, which is true, but not a null hypothesis. A null hypothesis should state that there is no significant correlation between the changes in the two parameters being assessed, in this case, the decrease in PFER and the increase in smoking

1/2 This answer is not relevant. The differences in ages does not affect validity, which is more concerned with the reliability of the data for this group.
The candidate gained credit for this answer.

Online Classes: Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

(c) (i) State a null hypothesis for a statistical test to find out whether the data in Table 2.1 supports the conclusion that:

An increase in the number of packets smoked decreases the PEFR measurement.
..... Number of packets smoked and........... PEFR measurement
 \qquad
(ii) State two ways in which the data for group 5 is less trustworthy compared with the data for the other groups.

- Mean age of volunteer s.....is above 30 where. ... as the other groups are below 30 .
- Number of volunteers tested is the ieast amongrt all other groups.

Mark Comment
1/3 The candidate gained credit for this answer.
This answer did not gain credit as the investigation does include a way of standardising this variable.
This statement is not relevant and suggests that this candidate does not understand that standard deviation is one way of showing uncertainty.

2/3 This statement could have gained mp4 or mp5, but did not gain credit as the candidate omitted 'mean' from the number of packets (mp4) and did not quote the figures to show the increase in the numbers of packets(mp5).
The candidate gained mp 2 as they have quoted relevant figures for the decrease n PEFR linked to an increase in the number of packets of cigarettes.
This answer gained $\mathrm{mp9}$ as the candidate has made a link between a decrease in mean age and and increase in number of cigarettes.

2(c)(i)

2(c)(ii)

0/1 This answer is a weak description of a negative correlation, which is true, but not a null hypothesis. A null hypothesis should state that there is no significant correlation between the changes in the two parameters being assessed, in this case, the decrease in PFER and the increase in smoking

1/2 This answer is not relevant. The differences in ages does not affect validity, which is more concerned with the reliability of the data for this group.
The candidate gained credit for this answer.

MEGA LECTURE

Online Classes : Megalecture@gmail.com

www.youtube.com/megalecture

www.megalecture.com

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

MEGA LECTURE

