Nuclear Physics - 2018

1. 9702/11/M/J/18/No.38

Which elementary particle is a lepton?

- A proton
- **B** neutron
- C electron
- **D** quark
- **2.** 9702/11/M/J/18/No.39

How many down quarks are in a nucleus of hydrogen-3, ³H?

- **A** 2
- B 3
- C 4
- D 5

3. 9702/11/M/J/18/No.40

What is the correct equation for β^+ decay?

- A neutron → proton + electron + electron antineutimo
- B neutron → proton + electron + electron neutrino
- C proton → neutron + positron + electron antineutrino
- D proton → neutron + positron + electron neutrino
- **4.** 9702/12/M/J/18/No.38

In the α -particle scattering experiment, a beam of α -particles is aimed at a thin gold foil. Most of the α -particles go straight through or are deflected by a small angle. A very small proportion are deflected through more than 90°, effectively rebounding towards the source of the α -particles.

Which conclusion about the structure of atoms cannot be drawn from this experiment alone?

- A Most of the atom is empty space.
- **B** Most of the mass of an atom is concentrated in the nucleus.
- **C** The nucleus contains both protons and neutrons.
- **D** The nucleus is charged.

5. 9702/12/M/J/18/No.39

Radon-211, $^{211}_{86}$ Rn, francium-210, $^{210}_{87}$ Fr, and radium-212, $^{212}_{88}$ Ra, are three nuclides.

How many neutrons does each nuclide have in its nucleus?

	radon-211	francium-210	radium-212
Α	86	87	88
В	125	123	124
С	211	210	212
D	297	297	300

6. 9702/12/M/J/18/No.40

A neutron is composed of one up (u) quark and two down (d) quarks. When the neutron decays to a proton, there is β -emission.

What is the change in the quark structure of the neutron due to the β -emission?

(The symbol for a neutrino is v_e and for an antineutrino is $\overline{v_e}$.)

A d
$$\rightarrow$$
 u + β^- + ν_e

B d
$$\rightarrow$$
 u + β^- + ν_e

C
$$u \rightarrow d + \beta^{+} + \nu_{e}$$

D
$$u \rightarrow d + \beta^+ + \overline{\nu_e}$$

7. 9702/13/M/J/18/No.39

A nucleus of magnesium-23 undergoes β^{+} decay, as represented by the nuclear equation shown.

$$^{23}_{12} \text{Mg} \rightarrow \text{X} + \beta^{\scriptscriptstyle +} + \nu_e$$

What is nucleus X?

B
$$^{22}_{13}$$
A l

D
$$^{23}_{13}Al$$

8. 9702/13/M/J/18/No.40

Which list contains only leptons?

- A electron, neutrino, positron
- B electron, neutrino, proton
- C electron, proton, neutron
- D neutrino, neutron, positron

9. 9702/12/F/M /18/No.39

A nucleus of neptunium-236 contains 93 protons and 143 neutrons. This nucleus decays with the emission of an α -particle. The nucleus formed then emits a β^- particle.

Which diagram shows the changes in the number P of protons and the number N of neutrons in these nuclei?

10. 9702/12/F/M /18/No.40

An isolated neutron decays to produce a proton, a β^- particle and an antineutrino.

Which row gives the quark composition of the neutron and the proton and the type of force that gives rise to this reaction?

	quark composition		type of force
	neutron	proton	type of force
Α	down, down, up	down, up, up	strong interaction
В	down, down, up	down, up, up	weak interaction
С	down, up, up	down, down, up	strong interaction
D	down, up, up	down, down, up	weak interaction