000
 MEGA LECTURE

Sets \& Venn Diagrams Question Paper 5

1 In a survey, 100 students are asked if they like basketball (B), football (F) and swimming (S).
The Venn diagram shows the results.

42 students like swimming.

40 students like exactly one sport.
(a) Find the values of p, q and r.
(b) How many students like
(i) all three sports,
(ii) basketball and swimming but not football?
(c) Find
(i) $\mathrm{n}\left(B^{\prime}\right)$,
(ii) $\mathrm{n}\left((B \cup F) \cap S^{\prime}\right)$.
(d) One student is chosen at random from the 100 students.

Find the probability that the student
(i) only likes swimming,
(ii) likes basketball but not swimming.
(e) Two students are chosen at random from those who like basketball.

Find the probability that they each like exactly one other sport.

2
$\mathscr{E}=\{1,2,3,4,5,6,7,9,11,16\}$
$P=\{2,3,5,7,11\}$

$$
S=\{1,4,9,16\}
$$

$$
M=\{3,6,9\}
$$

(a) Draw a Venn diagram to show this information.
(b) Write down the value of $\mathrm{n}\left(M^{\prime} \cap P\right)$.
[1]
$3 A$ and B are sets.
Write the following sets in their simplest form.
(a) $A \cap A^{\prime}$.

> Answer(a)
[1]
(b) $A \cup A^{\prime}$.

> Answer(b)
(c) $(A \cap B) \cup\left(A \cap B^{\prime}\right)$.

> Answer(c)

4 On the Venn diagrams shade the regions
(a) $A^{\prime} \cap C^{\prime}$,

(b) $(A \cup C) \cap B$.

(a) Shadethe region $A \cap B$.

(b) Shade the region $(A \cup B)^{\prime}$.

(c) Shade the complement of set B.

$6 \mathrm{n}(A)=18, \mathrm{n}(B)=11$ and $\mathrm{n}(A \cup B)^{\prime}=0$.
(a) Label the Venn diagram to show the sets A and B where $\mathrm{n}(A \cup B)=18$.

Write down the number of elemt ms in each region.

(b) Draw another Venn diagram to show the sets A and B where $\mathrm{n}(A \cup B)=29$. Write down the number of elements in each region.

(a All 24 students in a class are asked whether they like football and whether they like basketball. Some of the results are shown in the Venn diagram below.

$\mathscr{E}=\{$ students in the class $\}$.
$F=\{$ students who like football $\}$.
$B=\{$ students who like basketball $\}$.
(i) How many students like both sports?
(ii) How many students do not like either sport?
(iii) Write down the value of $\mathrm{n}(F \cup B)$.
(iv) Write down the value of $\mathrm{n}\left(F^{\prime} \cap B\right)$.
(v) A student from the class is selected at random.

What is the probability that this student likes basketball?
(vi) A student who likes football is selected at random. What is the probability that this student likes basketball?
(b) Two students are selected at random from a group of 10 boys and 12 girls.

Find the probability that
(i) they are both girls,
(ii) one is a boy and one is a girl.

8 n()$\not \mathscr{L}_{8} 21, \mathrm{n}(A \cup B)=19, \mathrm{n}\left(A \cap B^{\prime}\right)=8$ and $\mathrm{n}(A)=12$. Complete the Venn diagram to show this information.

$9 \mathscr{E}=\{40,41,42,43,44,45,46,47,48,49\}$
$A=$ \{prime numbers $\}$
$B=\{$ odd numbers $\}$
(a) Place the 10 numbers in the correct places on the Venpe diagram.

(b) State the value of $\mathrm{n}\left(B \cap A^{\prime}\right)$.

Answer(b)

10 Write each of these four numbers in the correct place in the Venn Diagram below.

$$
2.6, \frac{4}{17}, \quad \sqrt{12}, \quad \sqrt{\frac{112}{7}}
$$

11 Three sets A, B and K are such that $A \subset K, B \subset K$ and $A \cap B=\varnothing$. Draw a Venn diagram to show this information.

